Statistical Rigor and Assumption Testing: Enterprise Statistical Validation

Automated Statistical Workflows and Comprehensive Assumption Checking for Clinical Applications

Master enterprise-grade statistical rigor with automated assumption testing, comprehensive validation workflows, and intelligent interpretation guidance. Learn to implement clinical-grade statistical methods with regulatory compliance and professional documentation for biostatistics applications.

Tools
Author
Affiliation
Published

May 23, 2025

Modified

June 12, 2025

Keywords

statistical rigor shiny, assumption testing shiny, clinical statistical apps, automated statistical validation, biostatistics enterprise, regulatory statistical methods

Key Takeaways

Tip
  • Automated Validation: Implement comprehensive assumption checking that automatically validates statistical prerequisites with intelligent method selection and warning systems
  • Clinical Standards: Master biostatistics protocols that meet pharmaceutical and clinical research standards for regulatory submission and peer review
  • Intelligent Guidance: Create interpretation systems that provide context-aware statistical guidance, effect size interpretation, and clinical significance assessment
  • Regulatory Compliance: Build statistical workflows that generate validation documentation, assumption testing evidence, and audit trails for regulatory compliance
  • Professional Reliability: Establish enterprise-grade statistical computing with robust error handling, reproducible results, and comprehensive diagnostic reporting

Introduction

Statistical rigor forms the foundation of credible biostatistics applications, particularly in regulated industries where statistical methodology directly impacts regulatory approval, clinical decision-making, and patient safety. Enterprise statistical applications must go beyond basic calculations to implement comprehensive assumption checking, automated validation workflows, and intelligent interpretation guidance that meets professional research standards.



This tutorial transforms our secure t-test application into a statistically rigorous system that automatically validates assumptions, provides intelligent method selection, and generates comprehensive diagnostic reports. You’ll learn to implement clinical-grade statistical workflows that support regulatory submission, peer review, and professional research standards while maintaining the accessibility and user experience that stakeholders expect.

The statistical validation patterns you’ll master apply universally to biostatistics applications while addressing specific requirements for clinical trials, pharmaceutical research, and healthcare data analysis where statistical validity directly impacts research conclusions and regulatory decisions.

Understanding Statistical Rigor Requirements

Enterprise Statistical Standards

Professional statistical applications require comprehensive validation beyond basic calculations:

flowchart TD
    A[Raw Data Input] --> B[Data Quality Assessment]
    B --> C[Assumption Testing]
    C --> D[Method Selection]
    D --> E[Statistical Analysis]
    E --> F[Result Validation]
    F --> G[Interpretation Guidance]
    G --> H[Documentation Generation]
    
    B --> B1[Missing data patterns]
    B --> B2[Outlier detection]
    B --> B3[Distribution assessment]
    B --> B4[Sample size adequacy]
    
    C --> C1[Normality testing]
    C --> C2[Homogeneity of variance]
    C --> C3[Independence verification]
    C --> C4[Linearity assessment]
    
    D --> D1[Automatic method selection]
    D --> D2[Assumption-based routing]
    D --> D3[Robust alternatives]
    D --> D4[Sensitivity analysis]
    
    E --> E1[Primary analysis]
    E --> E2[Sensitivity testing]
    E --> E3[Effect size calculation]
    E --> E4[Confidence intervals]
    
    F --> F1[Result consistency checks]
    F --> F2[Computational validation]
    F --> F3[Cross-validation]
    F --> F4[Simulation verification]
    
    G --> G1[Clinical significance]
    G --> G2[Statistical interpretation]
    G --> G3[Limitation assessment]
    G --> G4[Recommendation generation]
    
    H --> H1[Assumption test reports]
    H --> H2[Method justification]
    H --> H3[Validation evidence]
    H --> H4[Regulatory documentation]
    
    style A fill:#ffebee
    style H fill:#e8f5e8
    style C fill:#fff3e0
    style E fill:#f3e5f5
    style G fill:#e3f2fd

Critical Statistical Validation Components:

Assumption Testing Framework:

Comprehensive validation of statistical prerequisites including normality, homogeneity of variance, independence, and linearity with automated testing and intelligent interpretation.

Method Selection Intelligence:

Automated selection of appropriate statistical methods based on data characteristics, assumption test results, and analysis objectives with fallback options for assumption violations.

Diagnostic Reporting:

Generation of comprehensive diagnostic reports that document assumption testing, method selection rationale, and validation evidence for regulatory review.

Clinical Interpretation:

Context-aware interpretation guidance that connects statistical results to clinical significance, practical importance, and regulatory implications.

Regulatory Statistical Requirements

Pharmaceutical and clinical research applications must meet specific statistical standards:

FDA Guidance Compliance:

  • Comprehensive assumption testing with documentation
  • Method selection justification with sensitivity analysis
  • Effect size reporting with clinical significance assessment
  • Multiple comparison adjustments where appropriate

ICH E9 Statistical Principles:

  • Pre-specified statistical analysis plans
  • Assumption validation with appropriate testing
  • Robust analysis methods for assumption violations
  • Comprehensive sensitivity analysis documentation

Good Clinical Practice (GCP):

  • Audit trail of statistical decisions and methods
  • Validation of statistical software and procedures
  • Documentation of assumption testing and results
  • Reproducible analysis with version control

Comprehensive Assumption Testing Framework

Advanced Statistical Testing Engine

Create a robust statistical testing system that automatically validates assumptions:

# File: R/statistical_testing_engine.R

#' Enterprise Statistical Testing Engine
#'
#' @description Comprehensive statistical testing framework with automated
#' assumption checking, intelligent method selection, and regulatory compliance
#' documentation for clinical and pharmaceutical applications.
#'
#' @export
StatisticalTestingEngine <- R6::R6Class(
  "StatisticalTestingEngine",
  
  public = list(
    
    #' @field config statistical testing configuration
    config = NULL,
    
    #' @field audit_logger audit logging system
    audit_logger = NULL,
    
    #' @field assumption_tests collection of assumption testing methods
    assumption_tests = NULL,
    
    #' @field method_selector intelligent method selection system
    method_selector = NULL,
    
    #' Initialize statistical testing engine
    #'
    #' @param config list. Statistical testing configuration
    #' @param audit_logger AuditLogger. Audit logging instance
    #'
    initialize = function(config = list(), audit_logger = NULL) {
      self$config <- private$default_testing_config(config)
      self$audit_logger <- audit_logger
      self$assumption_tests <- AssumptionTestingFramework$new(self$config$assumptions)
      self$method_selector <- StatisticalMethodSelector$new(self$config$method_selection)
      
      if (!is.null(self$audit_logger)) {
        self$audit_logger$log_event(
          "StatisticalTestingEngine initialized",
          level = "INFO",
          category = "STATISTICAL_ANALYSIS"
        )
      }
    },
    
    #' Conduct comprehensive statistical analysis
    #'
    #' @param data data.frame. Input data for analysis
    #' @param analysis_type character. Type of statistical analysis
    #' @param parameters list. Analysis parameters and options
    #' @param context list. Analysis context for regulatory documentation
    #'
    #' @return StatisticalAnalysisResult. Comprehensive analysis results
    #'
    conduct_analysis = function(data, analysis_type, parameters = list(), 
                               context = list()) {
      
      analysis_id <- uuid::UUIDgenerate()
      start_time <- Sys.time()
      
      tryCatch({
        
        # Log analysis start
        if (!is.null(self$audit_logger)) {
          self$audit_logger$log_event(
            "Statistical analysis initiated",
            level = "INFO",
            category = "STATISTICAL_ANALYSIS",
            details = list(
              analysis_id = analysis_id,
              analysis_type = analysis_type,
              sample_size = nrow(data),
              parameters = parameters,
              context = context
            )
          )
        }
        
        # Step 1: Data quality assessment
        quality_assessment <- private$assess_data_quality(data, context)
        
        if (!quality_assessment$suitable_for_analysis) {
          return(StatisticalAnalysisResult$new(
            analysis_id = analysis_id,
            success = FALSE,
            errors = quality_assessment$critical_issues,
            warnings = quality_assessment$warnings,
            recommendations = quality_assessment$recommendations
          ))
        }
        
        # Step 2: Comprehensive assumption testing
        assumption_results <- self$assumption_tests$test_all_assumptions(
          data = data,
          analysis_type = analysis_type,
          parameters = parameters
        )
        
        # Step 3: Intelligent method selection
        selected_method <- self$method_selector$select_optimal_method(
          data = data,
          analysis_type = analysis_type,
          assumption_results = assumption_results,
          parameters = parameters
        )
        
        # Step 4: Execute primary analysis
        primary_results <- private$execute_primary_analysis(
          data = data,
          method = selected_method,
          parameters = parameters
        )
        
        # Step 5: Sensitivity analysis
        sensitivity_results <- private$conduct_sensitivity_analysis(
          data = data,
          primary_method = selected_method,
          primary_results = primary_results,
          parameters = parameters
        )
        
        # Step 6: Effect size and clinical significance
        effect_analysis <- private$analyze_effect_sizes(
          data = data,
          results = primary_results,
          context = context
        )
        
        # Step 7: Generate interpretation guidance
        interpretation <- private$generate_interpretation_guidance(
          primary_results = primary_results,
          assumption_results = assumption_results,
          effect_analysis = effect_analysis,
          context = context
        )
        
        # Step 8: Create comprehensive result object
        analysis_result <- StatisticalAnalysisResult$new(
          analysis_id = analysis_id,
          success = TRUE,
          data_quality = quality_assessment,
          assumption_tests = assumption_results,
          method_selection = selected_method,
          primary_analysis = primary_results,
          sensitivity_analysis = sensitivity_results,
          effect_analysis = effect_analysis,
          interpretation = interpretation,
          execution_time = as.numeric(Sys.time() - start_time, units = "secs"),
          parameters = parameters,
          context = context
        )
        
        # Log successful completion
        if (!is.null(self$audit_logger)) {
          self$audit_logger$log_event(
            "Statistical analysis completed successfully",
            level = "INFO",
            category = "STATISTICAL_ANALYSIS",
            details = list(
              analysis_id = analysis_id,
              method_used = selected_method$method_name,
              p_value = primary_results$p_value,
              effect_size = effect_analysis$primary_effect_size,
              assumptions_met = assumption_results$overall_assessment$suitable,
              execution_time = analysis_result$execution_time
            )
          )
        }
        
        return(analysis_result)
        
      }, error = function(e) {
        
        # Log analysis error
        if (!is.null(self$audit_logger)) {
          self$audit_logger$log_event(
            paste("Statistical analysis failed:", e$message),
            level = "ERROR",
            category = "STATISTICAL_ANALYSIS",
            details = list(
              analysis_id = analysis_id,
              error_message = e$message,
              analysis_type = analysis_type
            )
          )
        }
        
        return(StatisticalAnalysisResult$new(
          analysis_id = analysis_id,
          success = FALSE,
          errors = list(paste("Analysis failed:", e$message)),
          warnings = list(),
          recommendations = list("Review data quality and analysis parameters")
        ))
      })
    },
    
    #' Generate regulatory compliance report
    #'
    #' @param analysis_result StatisticalAnalysisResult. Analysis results
    #' @param report_type character. Type of regulatory report
    #'
    #' @return RegulatoryReport. Formatted compliance report
    #'
    generate_regulatory_report = function(analysis_result, report_type = "FDA") {
      
      RegulatoryReportGenerator$new()$generate_report(
        analysis_result = analysis_result,
        report_type = report_type,
        compliance_standards = self$config$regulatory_compliance
      )
    }
  ),
  
  private = list(
    
    #' Default statistical testing configuration
    #'
    #' @param config list. User configuration
    #'
    #' @return list. Complete configuration
    #'
    default_testing_config = function(config) {
      
      default_config <- list(
        
        assumptions = list(
          normality = list(
            tests = c("shapiro_wilk", "anderson_darling", "kolmogorov_smirnov"),
            alpha_level = 0.05,
            minimum_sample_size = 3,
            maximum_sample_size = 5000
          ),
          
          homogeneity = list(
            tests = c("levene", "bartlett", "brown_forsythe"),
            alpha_level = 0.05,
            robust_default = TRUE
          ),
          
          independence = list(
            tests = c("durbin_watson", "runs_test"),
            alpha_level = 0.05,
            auto_detect = TRUE
          ),
          
          outliers = list(
            methods = c("iqr", "zscore", "modified_zscore", "isolation_forest"),
            action_threshold = 0.05,
            documentation_required = TRUE
          )
        ),
        
        method_selection = list(
          prefer_robust = TRUE,
          require_assumption_testing = TRUE,
          sensitivity_analysis_required = TRUE,
          effect_size_mandatory = TRUE
        ),
        
        regulatory_compliance = list(
          standards = c("FDA", "EMA", "ICH_E9"),
          documentation_level = "comprehensive",
          validation_required = TRUE,
          audit_trail = TRUE
        ),
        
        interpretation = list(
          clinical_context_required = TRUE,
          practical_significance_assessment = TRUE,
          limitation_documentation = TRUE,
          recommendation_generation = TRUE
        )
      )
      
      modifyList(default_config, config)
    },
    
    #' Assess data quality for statistical analysis
    #'
    #' @param data data.frame. Input data
    #' @param context list. Analysis context
    #'
    #' @return list. Data quality assessment results
    #'
    assess_data_quality = function(data, context) {
      
      quality_issues <- list()
      warnings <- list()
      recommendations <- list()
      
      # Sample size assessment
      if (nrow(data) < self$config$assumptions$normality$minimum_sample_size) {
        quality_issues <- append(quality_issues, 
                                "Sample size below minimum for reliable analysis")
      } else if (nrow(data) < 30) {
        warnings <- append(warnings, 
                          "Small sample size may affect test reliability")
        recommendations <- append(recommendations, 
                                 "Consider non-parametric alternatives")
      }
      
      # Missing data assessment
      missing_props <- sapply(data, function(x) sum(is.na(x)) / length(x))
      high_missing <- missing_props > 0.3
      
      if (any(high_missing)) {
        quality_issues <- append(quality_issues, 
                                paste("High missing data in variables:", 
                                     paste(names(data)[high_missing], collapse = ", ")))
      }
      
      # Data type validation
      numeric_vars <- sapply(data, is.numeric)
      if (!any(numeric_vars)) {
        quality_issues <- append(quality_issues, 
                                "No numeric variables found for analysis")
      }
      
      # Extreme value detection
      for (var_name in names(data)[numeric_vars]) {
        var_data <- data[[var_name]][!is.na(data[[var_name]])]
        
        if (length(var_data) > 0) {
          # Check for extreme outliers (beyond 3 IQRs)
          q1 <- quantile(var_data, 0.25)
          q3 <- quantile(var_data, 0.75)
          iqr <- q3 - q1
          
          extreme_outliers <- sum(var_data < (q1 - 3*iqr) | var_data > (q3 + 3*iqr))
          
          if (extreme_outliers > 0) {
            warnings <- append(warnings, 
                              paste("Extreme outliers detected in", var_name, 
                                   ":", extreme_outliers, "observations"))
            recommendations <- append(recommendations, 
                                     paste("Consider robust methods or outlier treatment for", var_name))
          }
        }
      }
      
      list(
        suitable_for_analysis = length(quality_issues) == 0,
        critical_issues = quality_issues,
        warnings = warnings,
        recommendations = recommendations,
        data_summary = list(
          n_observations = nrow(data),
          n_variables = ncol(data),
          n_numeric = sum(numeric_vars),
          missing_data_summary = missing_props
        )
      )
    },
    
    #' Execute primary statistical analysis
    #'
    #' @param data data.frame. Analysis data
    #' @param method StatisticalMethod. Selected statistical method
    #' @param parameters list. Analysis parameters
    #'
    #' @return list. Primary analysis results
    #'
    execute_primary_analysis = function(data, method, parameters) {
      
      switch(method$method_name,
        
        "independent_ttest_students" = private$execute_students_ttest(data, parameters),
        "independent_ttest_welch" = private$execute_welch_ttest(data, parameters),
        "mann_whitney_u" = private$execute_mann_whitney(data, parameters),
        "bootstrap_ttest" = private$execute_bootstrap_ttest(data, parameters),
        
        # Default fallback
        stop(paste("Unknown method:", method$method_name))
      )
    },
    
    #' Execute Student's t-test
    #'
    #' @param data data.frame. Analysis data
    #' @param parameters list. Test parameters
    #'
    #' @return list. T-test results
    #'
    execute_students_ttest = function(data, parameters) {
      
      # Validate data structure
      if (!"group" %in% names(data) || !"response" %in% names(data)) {
        stop("Data must contain 'group' and 'response' variables")
      }
      
      # Execute t-test
      test_result <- t.test(
        response ~ group,
        data = data,
        var.equal = TRUE,
        alternative = parameters$alternative %||% "two.sided",
        conf.level = parameters$conf_level %||% 0.95
      )
      
      # Calculate additional statistics
      group_data <- split(data$response, data$group)
      group_stats <- lapply(group_data, function(x) {
        list(
          n = length(x[!is.na(x)]),
          mean = mean(x, na.rm = TRUE),
          sd = sd(x, na.rm = TRUE),
          se = sd(x, na.rm = TRUE) / sqrt(length(x[!is.na(x)])),
          median = median(x, na.rm = TRUE),
          iqr = IQR(x, na.rm = TRUE)
        )
      })
      
      # Effect size calculation (Cohen's d)
      pooled_sd <- sqrt(((group_stats[[1]]$n - 1) * group_stats[[1]]$sd^2 + 
                        (group_stats[[2]]$n - 1) * group_stats[[2]]$sd^2) / 
                       (group_stats[[1]]$n + group_stats[[2]]$n - 2))
      
      cohens_d <- abs(group_stats[[1]]$mean - group_stats[[2]]$mean) / pooled_sd
      
      list(
        method_name = "Student's Independent Samples t-Test",
        test_statistic = test_result$statistic,
        degrees_freedom = test_result$parameter,
        p_value = test_result$p.value,
        confidence_interval = test_result$conf.int,
        mean_difference = diff(test_result$estimate),
        group_statistics = group_stats,
        effect_size = list(
          cohens_d = cohens_d,
          interpretation = private$interpret_cohens_d(cohens_d)
        ),
        assumptions_required = c("normality", "homogeneity", "independence"),
        raw_result = test_result
      )
    },
    
    #' Execute Welch's t-test
    #'
    #' @param data data.frame. Analysis data
    #' @param parameters list. Test parameters
    #'
    #' @return list. Welch t-test results
    #'
    execute_welch_ttest = function(data, parameters) {
      
      # Execute Welch t-test
      test_result <- t.test(
        response ~ group,
        data = data,
        var.equal = FALSE,  # Key difference from Student's t-test
        alternative = parameters$alternative %||% "two.sided",
        conf.level = parameters$conf_level %||% 0.95
      )
      
      # Calculate group statistics
      group_data <- split(data$response, data$group)
      group_stats <- lapply(group_data, function(x) {
        list(
          n = length(x[!is.na(x)]),
          mean = mean(x, na.rm = TRUE),
          sd = sd(x, na.rm = TRUE),
          se = sd(x, na.rm = TRUE) / sqrt(length(x[!is.na(x)])),
          median = median(x, na.rm = TRUE),
          iqr = IQR(x, na.rm = TRUE)
        )
      })
      
      # Effect size calculation (using pooled SD for comparability)
      pooled_sd <- sqrt((group_stats[[1]]$sd^2 + group_stats[[2]]$sd^2) / 2)
      cohens_d <- abs(group_stats[[1]]$mean - group_stats[[2]]$mean) / pooled_sd
      
      list(
        method_name = "Welch's Independent Samples t-Test",
        test_statistic = test_result$statistic,
        degrees_freedom = test_result$parameter,
        p_value = test_result$p.value,
        confidence_interval = test_result$conf.int,
        mean_difference = diff(test_result$estimate),
        group_statistics = group_stats,
        effect_size = list(
          cohens_d = cohens_d,
          interpretation = private$interpret_cohens_d(cohens_d)
        ),
        assumptions_required = c("normality", "independence"),
        raw_result = test_result
      )
    },
    
    #' Execute Mann-Whitney U test
    #'
    #' @param data data.frame. Analysis data
    #' @param parameters list. Test parameters
    #'
    #' @return list. Mann-Whitney U test results
    #'
    execute_mann_whitney = function(data, parameters) {
      
      group_data <- split(data$response, data$group)
      
      # Execute Mann-Whitney U test
      test_result <- wilcox.test(
        group_data[[1]], 
        group_data[[2]],
        alternative = parameters$alternative %||% "two.sided",
        conf.int = TRUE,
        conf.level = parameters$conf_level %||% 0.95
      )
      
      # Calculate group statistics
      group_stats <- lapply(group_data, function(x) {
        list(
          n = length(x[!is.na(x)]),
          median = median(x, na.rm = TRUE),
          iqr = IQR(x, na.rm = TRUE),
          mean_rank = mean(rank(c(group_data[[1]], group_data[[2]]))[seq_along(x)]),
          q1 = quantile(x, 0.25, na.rm = TRUE),
          q3 = quantile(x, 0.75, na.rm = TRUE)
        )
      })
      
      # Effect size calculation (rank-biserial correlation)
      n1 <- group_stats[[1]]$n
      n2 <- group_stats[[2]]$n
      U <- test_result$statistic
      r_rb <- 1 - (2 * U) / (n1 * n2)  # Rank-biserial correlation
      
      list(
        method_name = "Mann-Whitney U Test",
        test_statistic = test_result$statistic,
        p_value = test_result$p.value,
        confidence_interval = test_result$conf.int,
        median_difference = test_result$estimate,
        group_statistics = group_stats,
        effect_size = list(
          rank_biserial_r = r_rb,
          interpretation = private$interpret_rank_biserial(abs(r_rb))
        ),
        assumptions_required = c("independence", "ordinal_data"),
        raw_result = test_result
      )
    },
    
    #' Conduct sensitivity analysis
    #'
    #' @param data data.frame. Analysis data
    #' @param primary_method StatisticalMethod. Primary analysis method
    #' @param primary_results list. Primary analysis results
    #' @param parameters list. Analysis parameters
    #'
    #' @return list. Sensitivity analysis results
    #'
    conduct_sensitivity_analysis = function(data, primary_method, primary_results, parameters) {
      
      sensitivity_results <- list()
      
      # Alternative methods sensitivity
      alternative_methods <- private$get_alternative_methods(primary_method$method_name)
      
      for (alt_method in alternative_methods) {
        tryCatch({
          alt_result <- private$execute_primary_analysis(data, 
                                                        list(method_name = alt_method), 
                                                        parameters)
          sensitivity_results[[alt_method]] <- list(
            p_value = alt_result$p_value,
            effect_size = alt_result$effect_size,
            conclusion_consistent = abs(alt_result$p_value - primary_results$p_value) < 0.05
          )
        }, error = function(e) {
          sensitivity_results[[alt_method]] <- list(
            error = e$message,
            conclusion_consistent = NA
          )
        })
      }
      
      # Outlier removal sensitivity
      if (nrow(data) > 10) {
        outlier_removed_data <- private$remove_extreme_outliers(data)
        
        if (nrow(outlier_removed_data) >= nrow(data) * 0.8) {  # If less than 20% removed
          tryCatch({
            outlier_result <- private$execute_primary_analysis(outlier_removed_data, 
                                                              primary_method, 
                                                              parameters)
            sensitivity_results$outlier_removal <- list(
              n_removed = nrow(data) - nrow(outlier_removed_data),
              p_value = outlier_result$p_value,
              effect_size = outlier_result$effect_size,
              conclusion_consistent = (primary_results$p_value < 0.05) == (outlier_result$p_value < 0.05)
            )
          }, error = function(e) {
            sensitivity_results$outlier_removal <- list(error = e$message)
          })
        }
      }
      
      # Bootstrap sensitivity (if applicable)
      if (primary_method$method_name %in% c("independent_ttest_students", "independent_ttest_welch")) {
        tryCatch({
          bootstrap_result <- private$bootstrap_ttest_sensitivity(data, parameters)
          sensitivity_results$bootstrap <- bootstrap_result
        }, error = function(e) {
          sensitivity_results$bootstrap <- list(error = e$message)
        })
      }
      
      # Overall sensitivity assessment
      consistent_results <- sapply(sensitivity_results, function(x) {
        if ("conclusion_consistent" %in% names(x)) x$conclusion_consistent else NA
      })
      
      sensitivity_summary <- list(
        methods_tested = length(sensitivity_results),
        consistent_conclusions = sum(consistent_results, na.rm = TRUE),
        consistency_rate = mean(consistent_results, na.rm = TRUE),
        robust_conclusion = mean(consistent_results, na.rm = TRUE) >= 0.75,
        detailed_results = sensitivity_results
      )
      
      return(sensitivity_summary)
    },
    
    #' Analyze effect sizes and practical significance
    #'
    #' @param data data.frame. Analysis data
    #' @param results list. Primary analysis results
    #' @param context list. Analysis context
    #'
    #' @return list. Effect size analysis
    #'
    analyze_effect_sizes = function(data, results, context) {
      
      effect_analysis <- list()
      
      # Primary effect size from results
      primary_effect <- if ("cohens_d" %in% names(results$effect_size)) {
        list(
          name = "Cohen's d",
          value = results$effect_size$cohens_d,
          interpretation = results$effect_size$interpretation,
          type = "standardized_mean_difference"
        )
      } else if ("rank_biserial_r" %in% names(results$effect_size)) {
        list(
          name = "Rank-biserial correlation",
          value = results$effect_size$rank_biserial_r,
          interpretation = results$effect_size$interpretation,
          type = "rank_based"
        )
      } else {
        list(
          name = "Unknown",
          value = NA,
          interpretation = "Not calculated",
                    type = "undefined"
        )
      }
      
      effect_analysis$primary_effect_size <- primary_effect
      
      # Additional effect size calculations
      if ("group_statistics" %in% names(results)) {
        group_stats <- results$group_statistics
        
        # Glass's delta (using control group SD)
        if (length(group_stats) == 2 && all(sapply(group_stats, function(x) "sd" %in% names(x)))) {
          # Assume first group is control
          glass_delta <- abs(group_stats[[1]]$mean - group_stats[[2]]$mean) / group_stats[[1]]$sd
          
          effect_analysis$glass_delta <- list(
            value = glass_delta,
            interpretation = private$interpret_cohens_d(glass_delta),  # Same interpretation
            description = "Effect size using control group standard deviation"
          )
        }
        
        # Overlap statistics
        if (all(sapply(group_stats, function(x) all(c("mean", "sd") %in% names(x))))) {
          overlap_stats <- private$calculate_distribution_overlap(group_stats)
          effect_analysis$overlap_statistics <- overlap_stats
        }
      }
      
      # Clinical significance assessment
      if ("clinical_threshold" %in% names(context)) {
        clinical_assessment <- private$assess_clinical_significance(
          effect_size = primary_effect$value,
          threshold = context$clinical_threshold,
          context = context
        )
        effect_analysis$clinical_significance <- clinical_assessment
      }
      
      # Confidence intervals for effect sizes
      if (!is.null(context$effect_size_ci) && context$effect_size_ci) {
        effect_ci <- private$calculate_effect_size_ci(data, results, primary_effect)
        effect_analysis$confidence_intervals <- effect_ci
      }
      
      return(effect_analysis)
    },
    
    #' Generate comprehensive interpretation guidance
    #'
    #' @param primary_results list. Primary analysis results
    #' @param assumption_results list. Assumption test results
    #' @param effect_analysis list. Effect size analysis
    #' @param context list. Analysis context
    #'
    #' @return list. Interpretation guidance
    #'
    generate_interpretation_guidance = function(primary_results, assumption_results, 
                                              effect_analysis, context) {
      
      interpretation <- list()
      
      # Statistical significance interpretation
      alpha_level <- context$alpha_level %||% 0.05
      is_significant <- primary_results$p_value < alpha_level
      
      interpretation$statistical_significance <- list(
        is_significant = is_significant,
        p_value = primary_results$p_value,
        alpha_level = alpha_level,
        interpretation = if (is_significant) {
          paste0("The result is statistically significant at the ", 
                alpha_level, " level (p = ", round(primary_results$p_value, 4), ").")
        } else {
          paste0("The result is not statistically significant at the ", 
                alpha_level, " level (p = ", round(primary_results$p_value, 4), ").")
        }
      )
      
      # Effect size interpretation
      effect_size_value <- effect_analysis$primary_effect_size$value
      interpretation$effect_size <- list(
        magnitude = effect_analysis$primary_effect_size$interpretation,
        value = effect_size_value,
        practical_importance = private$assess_practical_importance(
          effect_size_value, 
          effect_analysis$primary_effect_size$type,
          context
        )
      )
      
      # Assumption validity assessment
      interpretation$assumption_validity <- list(
        overall_assessment = assumption_results$overall_assessment$suitable,
        violated_assumptions = assumption_results$overall_assessment$violations,
        impact_on_results = private$assess_assumption_impact(
          assumption_results, 
          primary_results$method_name
        ),
        recommendations = assumption_results$overall_assessment$recommendations
      )
      
      # Clinical significance (if applicable)
      if ("clinical_significance" %in% names(effect_analysis)) {
        interpretation$clinical_significance <- effect_analysis$clinical_significance
      }
      
      # Confidence interval interpretation
      if ("confidence_interval" %in% names(primary_results)) {
        interpretation$confidence_interval <- list(
          interval = primary_results$confidence_interval,
          level = context$conf_level %||% 0.95,
          interpretation = private$interpret_confidence_interval(
            primary_results$confidence_interval,
            primary_results$method_name
          )
        )
      }
      
      # Overall conclusion and recommendations
      interpretation$conclusion <- private$generate_overall_conclusion(
        statistical_significance = interpretation$statistical_significance,
        effect_size = interpretation$effect_size,
        assumption_validity = interpretation$assumption_validity,
        clinical_significance = interpretation$clinical_significance %||% NULL,
        context = context
      )
      
      # Limitations and caveats
      interpretation$limitations <- private$identify_analysis_limitations(
        primary_results,
        assumption_results,
        effect_analysis,
        context
      )
      
      return(interpretation)
    },
    
    #' Helper function to interpret Cohen's d
    #'
    #' @param d numeric. Cohen's d value
    #'
    #' @return character. Interpretation
    #'
    interpret_cohens_d = function(d) {
      abs_d <- abs(d)
      if (abs_d < 0.2) {
        "Very small effect"
      } else if (abs_d < 0.5) {
        "Small effect"
      } else if (abs_d < 0.8) {
        "Medium effect"
      } else {
        "Large effect"
      }
    },
    
    #' Helper function to interpret rank-biserial correlation
    #'
    #' @param r numeric. Rank-biserial correlation value
    #'
    #' @return character. Interpretation
    #'
    interpret_rank_biserial = function(r) {
      abs_r <- abs(r)
      if (abs_r < 0.1) {
        "Very small effect"
      } else if (abs_r < 0.3) {
        "Small effect"
      } else if (abs_r < 0.5) {
        "Medium effect"
      } else {
        "Large effect"
      }
    },
    
    #' Get alternative methods for sensitivity analysis
    #'
    #' @param primary_method character. Primary method name
    #'
    #' @return character vector. Alternative method names
    #'
    get_alternative_methods = function(primary_method) {
      
      switch(primary_method,
        "independent_ttest_students" = c("independent_ttest_welch", "mann_whitney_u"),
        "independent_ttest_welch" = c("independent_ttest_students", "mann_whitney_u"),
        "mann_whitney_u" = c("independent_ttest_welch", "bootstrap_ttest"),
        "bootstrap_ttest" = c("independent_ttest_welch", "mann_whitney_u"),
        c()  # Default: no alternatives
      )
    },
    
    #' Remove extreme outliers from data
    #'
    #' @param data data.frame. Input data
    #'
    #' @return data.frame. Data with extreme outliers removed
    #'
    remove_extreme_outliers = function(data) {
      
      if (!"response" %in% names(data)) {
        return(data)
      }
      
      response_data <- data$response[!is.na(data$response)]
      
      if (length(response_data) < 5) {
        return(data)  # Don't remove outliers for very small samples
      }
      
      # Use 3 IQR rule for extreme outliers
      q1 <- quantile(response_data, 0.25)
      q3 <- quantile(response_data, 0.75)
      iqr <- q3 - q1
      
      lower_bound <- q1 - 3 * iqr
      upper_bound <- q3 + 3 * iqr
      
      # Keep only non-extreme values
      keep_indices <- !is.na(data$response) & 
                     data$response >= lower_bound & 
                     data$response <= upper_bound
      
      return(data[keep_indices, ])
    },
    
    #' Bootstrap t-test sensitivity analysis
    #'
    #' @param data data.frame. Analysis data
    #' @param parameters list. Analysis parameters
    #' @param n_bootstrap integer. Number of bootstrap samples
    #'
    #' @return list. Bootstrap sensitivity results
    #'
    bootstrap_ttest_sensitivity = function(data, parameters, n_bootstrap = 1000) {
      
      group_data <- split(data$response, data$group)
      group1 <- group_data[[1]][!is.na(group_data[[1]])]
      group2 <- group_data[[2]][!is.na(group_data[[2]])]
      
      # Bootstrap sampling
      bootstrap_results <- replicate(n_bootstrap, {
        # Resample with replacement
        boot_group1 <- sample(group1, length(group1), replace = TRUE)
        boot_group2 <- sample(group2, length(group2), replace = TRUE)
        
        # Calculate statistics
        mean_diff <- mean(boot_group1) - mean(boot_group2)
        pooled_sd <- sqrt((var(boot_group1) + var(boot_group2)) / 2)
        cohens_d <- mean_diff / pooled_sd
        
        # Bootstrap t-test
        t_result <- t.test(boot_group1, boot_group2)
        
        list(
          mean_difference = mean_diff,
          cohens_d = cohens_d,
          p_value = t_result$p.value,
          t_statistic = t_result$statistic
        )
      }, simplify = FALSE)
      
      # Summarize bootstrap results
      p_values <- sapply(bootstrap_results, function(x) x$p_value)
      cohens_d_values <- sapply(bootstrap_results, function(x) x$cohens_d)
      
      list(
        n_bootstrap = n_bootstrap,
        p_value_median = median(p_values, na.rm = TRUE),
        p_value_ci = quantile(p_values, c(0.025, 0.975), na.rm = TRUE),
        cohens_d_median = median(cohens_d_values, na.rm = TRUE),
        cohens_d_ci = quantile(cohens_d_values, c(0.025, 0.975), na.rm = TRUE),
        proportion_significant = mean(p_values < 0.05, na.rm = TRUE)
      )
    },
    
    #' Calculate distribution overlap statistics
    #'
    #' @param group_stats list. Group statistics
    #'
    #' @return list. Overlap statistics
    #'
    calculate_distribution_overlap = function(group_stats) {
      
      if (length(group_stats) != 2) {
        return(list(error = "Overlap calculation requires exactly 2 groups"))
      }
      
      # Extract means and SDs
      mean1 <- group_stats[[1]]$mean
      mean2 <- group_stats[[2]]$mean
      sd1 <- group_stats[[1]]$sd
      sd2 <- group_stats[[2]]$sd
      
      # Cohen's U3 (percentage of group 2 below mean of group 1)
      u3 <- pnorm(mean1, mean2, sd2)
      
      # Probability of superiority
      prob_superiority <- pnorm((mean1 - mean2) / sqrt(sd1^2 + sd2^2))
      
      # Overlap coefficient (approximate)
      if (sd1 > 0 && sd2 > 0) {
        overlap_coef <- 2 * pnorm(-abs(mean1 - mean2) / (2 * sqrt((sd1^2 + sd2^2) / 2)))
      } else {
        overlap_coef <- NA
      }
      
      list(
        cohens_u3 = u3,
        probability_superiority = prob_superiority,
        overlap_coefficient = overlap_coef,
        interpretation = list(
          u3_meaning = paste0(round(u3 * 100, 1), "% of group 2 scores below group 1 mean"),
          superiority_meaning = paste0(round(prob_superiority * 100, 1), 
                                      "% probability that group 1 score > group 2 score")
        )
      )
    },
    
    #' Assess clinical significance
    #'
    #' @param effect_size numeric. Effect size value
    #' @param threshold numeric. Clinical significance threshold
    #' @param context list. Analysis context
    #'
    #' @return list. Clinical significance assessment
    #'
    assess_clinical_significance = function(effect_size, threshold, context) {
      
      is_clinically_significant <- abs(effect_size) >= threshold
      
      list(
        is_clinically_significant = is_clinically_significant,
        effect_size = effect_size,
        threshold = threshold,
        interpretation = if (is_clinically_significant) {
          paste0("The effect size (", round(effect_size, 3), 
                ") meets or exceeds the clinical significance threshold (", 
                threshold, ").")
        } else {
          paste0("The effect size (", round(effect_size, 3), 
                ") does not meet the clinical significance threshold (", 
                threshold, ").")
        },
        clinical_context = context$clinical_context %||% "No specific context provided"
      )
    },
    
    #' Assess practical importance of effect size
    #'
    #' @param effect_size numeric. Effect size value
    #' @param effect_type character. Type of effect size
    #' @param context list. Analysis context
    #'
    #' @return list. Practical importance assessment
    #'
    assess_practical_importance = function(effect_size, effect_type, context) {
      
      # Domain-specific thresholds
      domain_thresholds <- context$domain_thresholds %||% list(
        clinical = list(small = 0.2, medium = 0.5, large = 0.8),
        educational = list(small = 0.25, medium = 0.6, large = 1.0),
        psychological = list(small = 0.2, medium = 0.5, large = 0.8)
      )
      
      domain <- context$domain %||% "clinical"
      thresholds <- domain_thresholds[[domain]] %||% domain_thresholds$clinical
      
      abs_effect <- abs(effect_size)
      
      practical_magnitude <- if (abs_effect < thresholds$small) {
        "Minimal practical importance"
      } else if (abs_effect < thresholds$medium) {
        "Small practical importance"
      } else if (abs_effect < thresholds$large) {
        "Moderate practical importance"
      } else {
        "Large practical importance"
      }
      
      list(
        magnitude = practical_magnitude,
        domain_context = domain,
        thresholds_used = thresholds,
        recommendation = private$generate_practical_recommendation(
          practical_magnitude, 
          context
        )
      )
    },
    
    #' Generate practical recommendation based on effect size
    #'
    #' @param magnitude character. Practical magnitude assessment
    #' @param context list. Analysis context
    #'
    #' @return character. Practical recommendation
    #'
    generate_practical_recommendation = function(magnitude, context) {
      
      switch(magnitude,
        "Minimal practical importance" = 
          "The observed difference may have limited practical significance. Consider whether the effect is meaningful in the specific context.",
        
        "Small practical importance" = 
          "The observed difference suggests a small but potentially meaningful effect. Evaluate cost-benefit considerations for implementation.",
        
        "Moderate practical importance" = 
          "The observed difference indicates a moderate effect that is likely to be practically meaningful. Strong consideration for implementation is warranted.",
        
        "Large practical importance" = 
          "The observed difference indicates a large effect with substantial practical importance. Implementation should be strongly considered.",
        
        "Unknown practical importance"
      )
    }
  )
)

Assumption Testing Framework

Comprehensive Assumption Validation

Create a sophisticated assumption testing system for statistical rigor:

# File: R/assumption_testing_framework.R

#' Comprehensive Assumption Testing Framework
#'
#' @description Advanced assumption testing system with automated validation,
#' intelligent interpretation, and regulatory compliance documentation.
#'
#' @export
AssumptionTestingFramework <- R6::R6Class(
  "AssumptionTestingFramework",
  
  public = list(
    
    #' @field config assumption testing configuration
    config = NULL,
    
    #' @field test_registry collection of available assumption tests
    test_registry = NULL,
    
    #' Initialize assumption testing framework
    #'
    #' @param config list. Assumption testing configuration
    #'
    initialize = function(config = list()) {
      self$config <- private$default_assumption_config(config)
      self$test_registry <- private$initialize_test_registry()
    },
    
    #' Test all relevant assumptions for analysis
    #'
    #' @param data data.frame. Analysis data
    #' @param analysis_type character. Type of statistical analysis
    #' @param parameters list. Analysis parameters
    #'
    #' @return AssumptionTestResults. Comprehensive assumption test results
    #'
    test_all_assumptions = function(data, analysis_type, parameters = list()) {
      
      # Determine required assumptions for analysis type
      required_assumptions <- private$get_required_assumptions(analysis_type)
      
      assumption_results <- list()
      
      # Test each required assumption
      for (assumption in required_assumptions) {
        
        test_result <- switch(assumption,
          "normality" = self$test_normality(data, parameters),
          "homogeneity" = self$test_homogeneity(data, parameters),
          "independence" = self$test_independence(data, parameters),
          "linearity" = self$test_linearity(data, parameters),
          "outliers" = self$detect_outliers(data, parameters),
          list(error = paste("Unknown assumption:", assumption))
        )
        
        assumption_results[[assumption]] <- test_result
      }
      
      # Generate overall assessment
      overall_assessment <- private$assess_overall_assumptions(
        assumption_results, 
        analysis_type,
        parameters
      )
      
      AssumptionTestResults$new(
        analysis_type = analysis_type,
        assumption_results = assumption_results,
        overall_assessment = overall_assessment,
        parameters = parameters
      )
    },
    
    #' Test normality assumption
    #'
    #' @param data data.frame. Input data
    #' @param parameters list. Test parameters
    #'
    #' @return list. Normality test results
    #'
    test_normality = function(data, parameters = list()) {
      
      normality_results <- list()
      
      # Identify numeric variables to test
      if ("response" %in% names(data)) {
        test_vars <- "response"
      } else {
        numeric_vars <- names(data)[sapply(data, is.numeric)]
        test_vars <- numeric_vars[1:min(3, length(numeric_vars))]  # Limit to 3 variables
      }
      
      for (var_name in test_vars) {
        var_data <- data[[var_name]][!is.na(data[[var_name]])]
        
        if (length(var_data) < 3) {
          normality_results[[var_name]] <- list(
            error = "Insufficient data for normality testing",
            n = length(var_data)
          )
          next
        }
        
        var_results <- list()
        
        # Shapiro-Wilk test (for n <= 5000)
        if (length(var_data) <= 5000) {
          tryCatch({
            shapiro_result <- shapiro.test(var_data)
            var_results$shapiro_wilk <- list(
              statistic = shapiro_result$statistic,
              p_value = shapiro_result$p.value,
              method = "Shapiro-Wilk",
              conclusion = shapiro_result$p.value >= self$config$normality$alpha_level
            )
          }, error = function(e) {
            var_results$shapiro_wilk <- list(error = e$message)
          })
        }
        
        # Anderson-Darling test
        if (requireNamespace("nortest", quietly = TRUE)) {
          tryCatch({
            ad_result <- nortest::ad.test(var_data)
            var_results$anderson_darling <- list(
              statistic = ad_result$statistic,
              p_value = ad_result$p.value,
              method = "Anderson-Darling",
              conclusion = ad_result$p.value >= self$config$normality$alpha_level
            )
          }, error = function(e) {
            var_results$anderson_darling <- list(error = e$message)
          })
        }
        
        # Kolmogorov-Smirnov test
        tryCatch({
          # Compare to normal distribution with sample mean and sd
          ks_result <- ks.test(var_data, "pnorm", mean(var_data), sd(var_data))
          var_results$kolmogorov_smirnov <- list(
            statistic = ks_result$statistic,
            p_value = ks_result$p.value,
            method = "Kolmogorov-Smirnov",
            conclusion = ks_result$p.value >= self$config$normality$alpha_level
          )
        }, error = function(e) {
          var_results$kolmogorov_smirnov <- list(error = e$message)
        })
        
        # Descriptive statistics for normality assessment
        var_results$descriptive_assessment <- private$assess_normality_descriptive(var_data)
        
        # Overall normality conclusion for this variable
        valid_tests <- var_results[!sapply(var_results, function(x) "error" %in% names(x))]
        if (length(valid_tests) > 0) {
          test_conclusions <- sapply(valid_tests, function(x) {
            if ("conclusion" %in% names(x)) x$conclusion else NA
          })
          
          # Conservative approach: assume non-normal if any test rejects
          var_results$overall_conclusion <- list(
            assumes_normal = all(test_conclusions, na.rm = TRUE),
            n_tests = sum(!is.na(test_conclusions)),
            consensus = mean(test_conclusions, na.rm = TRUE)
          )
        }
        
        normality_results[[var_name]] <- var_results
      }
      
      return(normality_results)
    },
    
    #' Test homogeneity of variance assumption
    #'
    #' @param data data.frame. Input data with group and response variables
    #' @param parameters list. Test parameters
    #'
    #' @return list. Homogeneity test results
    #'
    test_homogeneity = function(data, parameters = list()) {
      
      if (!"group" %in% names(data) || !"response" %in% names(data)) {
        return(list(error = "Data must contain 'group' and 'response' variables"))
      }
      
      # Remove missing values
      complete_data <- data[!is.na(data$group) & !is.na(data$response), ]
      
      if (nrow(complete_data) < 6) {
        return(list(error = "Insufficient data for homogeneity testing"))
      }
      
      group_counts <- table(complete_data$group)
      if (any(group_counts < 2)) {
        return(list(error = "Each group must have at least 2 observations"))
      }
      
      homogeneity_results <- list()
      
      # Levene's test (robust)
      tryCatch({
        if (requireNamespace("car", quietly = TRUE)) {
          levene_result <- car::leveneTest(response ~ group, data = complete_data)
          homogeneity_results$levene <- list(
            statistic = levene_result$`F value`[1],
            p_value = levene_result$`Pr(>F)`[1],
            df = levene_result$Df,
            method = "Levene's Test",
            conclusion = levene_result$`Pr(>F)`[1] >= self$config$homogeneity$alpha_level
          )
        } else {
          # Manual Levene's test implementation
          levene_manual <- private$manual_levene_test(complete_data)
          homogeneity_results$levene <- levene_manual
        }
      }, error = function(e) {
        homogeneity_results$levene <- list(error = e$message)
      })
      
      # Bartlett's test (assumes normality)
      tryCatch({
        bartlett_result <- bartlett.test(response ~ group, data = complete_data)
        homogeneity_results$bartlett <- list(
          statistic = bartlett_result$statistic,
          p_value = bartlett_result$p.value,
          df = bartlett_result$parameter,
          method = "Bartlett's Test",
          conclusion = bartlett_result$p.value >= self$config$homogeneity$alpha_level,
          note = "Assumes normality within groups"
        )
      }, error = function(e) {
        homogeneity_results$bartlett <- list(error = e$message)
      })
      
      # Brown-Forsythe test (robust alternative to Levene's)
      tryCatch({
        bf_result <- private$brown_forsythe_test(complete_data)
        homogeneity_results$brown_forsythe <- bf_result
      }, error = function(e) {
        homogeneity_results$brown_forsythe <- list(error = e$message)
      })
      
      # Descriptive assessment
      group_variances <- by(complete_data$response, complete_data$group, var, na.rm = TRUE)
      homogeneity_results$descriptive_assessment <- list(
        group_variances = as.list(group_variances),
        variance_ratio = max(group_variances) / min(group_variances),
        variance_ratio_interpretation = private$interpret_variance_ratio(
          max(group_variances) / min(group_variances)
        )
      )
      
      # Overall homogeneity conclusion
      valid_tests <- homogeneity_results[!sapply(homogeneity_results, function(x) "error" %in% names(x))]
      test_conclusions <- sapply(valid_tests, function(x) {
        if ("conclusion" %in% names(x)) x$conclusion else NA
      })
      
      if (length(test_conclusions) > 0) {
        homogeneity_results$overall_conclusion <- list(
          assumes_homogeneity = mean(test_conclusions, na.rm = TRUE) >= 0.5,
          n_tests = sum(!is.na(test_conclusions)),
          consensus = mean(test_conclusions, na.rm = TRUE),
          recommendation = if (mean(test_conclusions, na.rm = TRUE) >= 0.5) {
            "Homogeneity assumption appears reasonable"
          } else {
            "Consider using methods that don't assume equal variances (e.g., Welch's t-test)"
          }
        )
      }
      
      return(homogeneity_results)
    },
    
    #' Test independence assumption
    #'
    #' @param data data.frame. Input data
    #' @param parameters list. Test parameters
    #'
    #' @return list. Independence test results
    #'
    test_independence = function(data, parameters = list()) {
      
      independence_results <- list()
      
      # Note about independence assumption
      independence_results$note <- paste(
        "Independence is primarily a design issue that should be ensured",
        "through proper randomization and data collection procedures.",
        "Statistical tests can only detect certain types of dependence."
      )
      
      # For time series or ordered data, test for autocorrelation
      if ("response" %in% names(data) && nrow(data) >= 10) {
        
        response_data <- data$response[!is.na(data$response)]
        
        # Durbin-Watson test for autocorrelation
        if (requireNamespace("lmtest", quietly = TRUE)) {
          tryCatch({
            # Simple linear model for Durbin-Watson
            temp_data <- data.frame(
              y = response_data,
              x = seq_along(response_data)
            )
            temp_model <- lm(y ~ x, data = temp_data)
            dw_result <- lmtest::dwtest(temp_model)
            
            independence_results$durbin_watson <- list(
              statistic = dw_result$statistic,
              p_value = dw_result$p.value,
              method = "Durbin-Watson Test",
              conclusion = dw_result$p.value >= self$config$independence$alpha_level,
              interpretation = "Tests for first-order autocorrelation"
            )
          }, error = function(e) {
            independence_results$durbin_watson <- list(error = e$message)
          })
        }
        
        # Runs test for randomness
        tryCatch({
          runs_result <- private$runs_test(response_data)
          independence_results$runs_test <- runs_result
        }, error = function(e) {
          independence_results$runs_test <- list(error = e$message)
        })
      }
      
      # Design-based independence assessment
      independence_results$design_assessment <- list(
        data_collection_method = parameters$data_collection_method %||% "Not specified",
        randomization_used = parameters$randomization %||% "Not specified",
        temporal_ordering = "order" %in% names(data) || "time" %in% names(data),
        clustering_present = parameters$clustering %||% "Not specified",
        repeated_measures = parameters$repeated_measures %||% "Not specified"
      )
      
      # Overall independence assessment
      if (any(sapply(independence_results, function(x) "conclusion" %in% names(x)))) {
        test_conclusions <- sapply(independence_results, function(x) {
          if ("conclusion" %in% names(x)) x$conclusion else NA
        })
        
        independence_results$overall_conclusion <- list(
          statistical_evidence_for_independence = mean(test_conclusions, na.rm = TRUE) >= 0.5,
          primary_concern = "Ensure independence through study design",
          recommendation = paste(
            "Independence is best ensured through proper study design.",
            "If data collection involved clustering, temporal dependence,",
            "or repeated measures, consider appropriate analytical methods."
          )
        )
      }
      
      return(independence_results)
    },
    
    #' Detect outliers in data
    #'
    #' @param data data.frame. Input data
    #' @param parameters list. Detection parameters
    #'
    #' @return list. Outlier detection results
    #'
    detect_outliers = function(data, parameters = list()) {
      
      outlier_results <- list()
      
      # Identify numeric variables for outlier detection
      if ("response" %in% names(data)) {
        test_vars <- "response"
      } else {
        numeric_vars <- names(data)[sapply(data, is.numeric)]
        test_vars <- numeric_vars[1:min(3, length(numeric_vars))]
      }
      
      for (var_name in test_vars) {
                var_data <- data[[var_name]][!is.na(data[[var_name]])]
        
        if (length(var_data) < 5) {
          outlier_results[[var_name]] <- list(
            error = "Insufficient data for outlier detection",
            n = length(var_data)
          )
          next
        }
        
        var_outlier_results <- list()
        
        # IQR method (1.5 * IQR rule)
        q1 <- quantile(var_data, 0.25)
        q3 <- quantile(var_data, 0.75)
        iqr <- q3 - q1
        
        iqr_lower <- q1 - 1.5 * iqr
        iqr_upper <- q3 + 1.5 * iqr
        iqr_outliers <- which(var_data < iqr_lower | var_data > iqr_upper)
        
        var_outlier_results$iqr_method <- list(
          method = "IQR (1.5 * IQR rule)",
          outlier_indices = iqr_outliers,
          outlier_count = length(iqr_outliers),
          outlier_proportion = length(iqr_outliers) / length(var_data),
          bounds = c(iqr_lower, iqr_upper),
          outlier_values = var_data[iqr_outliers]
        )
        
        # Modified Z-score method
        median_val <- median(var_data)
        mad_val <- mad(var_data)
        
        if (mad_val > 0) {
          modified_z <- 0.6745 * (var_data - median_val) / mad_val
          mz_outliers <- which(abs(modified_z) > 3.5)
          
          var_outlier_results$modified_zscore <- list(
            method = "Modified Z-score",
            outlier_indices = mz_outliers,
            outlier_count = length(mz_outliers),
            outlier_proportion = length(mz_outliers) / length(var_data),
            threshold = 3.5,
            outlier_values = var_data[mz_outliers],
            modified_z_scores = modified_z[mz_outliers]
          )
        }
        
        # Isolation Forest (if sufficient data)
        if (length(var_data) >= 20 && requireNamespace("isotree", quietly = TRUE)) {
          tryCatch({
            iso_model <- isotree::isolation.forest(matrix(var_data, ncol = 1))
            anomaly_scores <- isotree::predict.isolation_forest(iso_model, matrix(var_data, ncol = 1))
            iso_threshold <- quantile(anomaly_scores, 0.95)  # Top 5% as outliers
            iso_outliers <- which(anomaly_scores > iso_threshold)
            
            var_outlier_results$isolation_forest <- list(
              method = "Isolation Forest",
              outlier_indices = iso_outliers,
              outlier_count = length(iso_outliers),
              outlier_proportion = length(iso_outliers) / length(var_data),
              threshold = iso_threshold,
              outlier_values = var_data[iso_outliers],
              anomaly_scores = anomaly_scores[iso_outliers]
            )
          }, error = function(e) {
            var_outlier_results$isolation_forest <- list(error = e$message)
          })
        }
        
        # Consensus outlier identification
        all_outlier_indices <- unique(c(
          iqr_outliers,
          if (exists("mz_outliers")) mz_outliers else c(),
          if ("isolation_forest" %in% names(var_outlier_results) && 
              !"error" %in% names(var_outlier_results$isolation_forest)) {
            var_outlier_results$isolation_forest$outlier_indices
          } else c()
        ))
        
        # Count how many methods identify each outlier
        outlier_consensus <- sapply(all_outlier_indices, function(idx) {
          count <- 0
          if (idx %in% iqr_outliers) count <- count + 1
          if (exists("mz_outliers") && idx %in% mz_outliers) count <- count + 1
          if ("isolation_forest" %in% names(var_outlier_results) && 
              !"error" %in% names(var_outlier_results$isolation_forest) &&
              idx %in% var_outlier_results$isolation_forest$outlier_indices) count <- count + 1
          count
        })
        
        # High-confidence outliers (identified by multiple methods)
        high_confidence_outliers <- all_outlier_indices[outlier_consensus >= 2]
        
        var_outlier_results$consensus <- list(
          all_potential_outliers = all_outlier_indices,
          high_confidence_outliers = high_confidence_outliers,
          outlier_consensus_scores = outlier_consensus,
          recommendation = if (length(high_confidence_outliers) > 0) {
            paste("Consider investigating", length(high_confidence_outliers), 
                  "high-confidence outliers")
          } else if (length(all_outlier_indices) > 0) {
            paste("Potential outliers detected but with low consensus.",
                  "Manual review recommended")
          } else {
            "No significant outliers detected"
          }
        )
        
        outlier_results[[var_name]] <- var_outlier_results
      }
      
      return(outlier_results)
    }
  ),
  
  private = list(
    
    #' Default assumption testing configuration
    #'
    #' @param config list. User configuration
    #'
    #' @return list. Complete configuration
    #'
    default_assumption_config = function(config) {
      
      default_config <- list(
        normality = list(
          tests = c("shapiro_wilk", "anderson_darling", "kolmogorov_smirnov"),
          alpha_level = 0.05,
          min_sample_size = 3,
          max_sample_size_shapiro = 5000,
          descriptive_thresholds = list(
            skewness = 2.0,
            kurtosis = 7.0
          )
        ),
        
        homogeneity = list(
          tests = c("levene", "bartlett", "brown_forsythe"),
          alpha_level = 0.05,
          variance_ratio_concern = 4.0,
          prefer_robust = TRUE
        ),
        
        independence = list(
          tests = c("durbin_watson", "runs_test"),
          alpha_level = 0.05,
          design_based_assessment = TRUE
        ),
        
        outliers = list(
          methods = c("iqr", "modified_zscore", "isolation_forest"),
          iqr_multiplier = 1.5,
          modified_z_threshold = 3.5,
          isolation_forest_threshold = 0.95,
          consensus_threshold = 2
        )
      )
      
      modifyList(default_config, config)
    },
    
    #' Initialize test registry
    #'
    #' @return list. Available statistical tests
    #'
    initialize_test_registry = function() {
      
      list(
        normality = list(
          shapiro_wilk = list(
            function_name = "shapiro.test",
            package = "stats",
            sample_size_limits = c(3, 5000),
            description = "Shapiro-Wilk test for normality"
          ),
          anderson_darling = list(
            function_name = "ad.test",
            package = "nortest",
            sample_size_limits = c(7, Inf),
            description = "Anderson-Darling test for normality"
          ),
          kolmogorov_smirnov = list(
            function_name = "ks.test",
            package = "stats",
            sample_size_limits = c(3, Inf),
            description = "Kolmogorov-Smirnov test for normality"
          )
        ),
        
        homogeneity = list(
          levene = list(
            function_name = "leveneTest",
            package = "car",
            description = "Levene's test for homogeneity of variance"
          ),
          bartlett = list(
            function_name = "bartlett.test",
            package = "stats",
            description = "Bartlett's test for homogeneity of variance"
          )
        )
      )
    },
    
    #' Get required assumptions for analysis type
    #'
    #' @param analysis_type character. Type of analysis
    #'
    #' @return character vector. Required assumptions
    #'
    get_required_assumptions = function(analysis_type) {
      
      switch(analysis_type,
        "independent_ttest" = c("normality", "homogeneity", "independence", "outliers"),
        "paired_ttest" = c("normality", "independence", "outliers"),
        "one_sample_ttest" = c("normality", "independence", "outliers"),
        "anova" = c("normality", "homogeneity", "independence", "outliers"),
        "correlation" = c("normality", "linearity", "independence", "outliers"),
        "regression" = c("normality", "linearity", "independence", "homogeneity", "outliers"),
        
        # Default assumptions for unknown analysis types
        c("normality", "independence", "outliers")
      )
    },
    
    #' Assess overall assumption validity
    #'
    #' @param assumption_results list. Results from individual assumption tests
    #' @param analysis_type character. Type of analysis
    #' @param parameters list. Analysis parameters
    #'
    #' @return list. Overall assessment
    #'
    assess_overall_assumptions = function(assumption_results, analysis_type, parameters) {
      
      violations <- list()
      warnings <- list()
      recommendations <- list()
      
      # Check each assumption
      for (assumption_name in names(assumption_results)) {
        assumption_result <- assumption_results[[assumption_name]]
        
        if ("error" %in% names(assumption_result)) {
          warnings <- append(warnings, 
                            paste("Could not test", assumption_name, "assumption:",
                                 assumption_result$error))
          next
        }
        
        assumption_met <- switch(assumption_name,
          "normality" = private$assess_normality_overall(assumption_result),
          "homogeneity" = private$assess_homogeneity_overall(assumption_result),
          "independence" = private$assess_independence_overall(assumption_result),
          "outliers" = private$assess_outliers_overall(assumption_result),
          TRUE  # Default: assume met if unknown
        )
        
        if (!assumption_met$met) {
          violations <- append(violations, assumption_name)
          warnings <- append(warnings, assumption_met$warning)
          recommendations <- append(recommendations, assumption_met$recommendation)
        }
      }
      
      # Overall suitability assessment
      critical_violations <- intersect(violations, c("normality", "independence"))
      suitable_for_analysis <- length(critical_violations) == 0
      
      # Generate method recommendations
      method_recommendations <- private$generate_method_recommendations(
        violations, analysis_type, assumption_results
      )
      
      list(
        suitable = suitable_for_analysis,
        violations = violations,
        critical_violations = critical_violations,
        warnings = warnings,
        recommendations = c(recommendations, method_recommendations),
        assumption_summary = private$create_assumption_summary(assumption_results),
        suggested_alternatives = if (!suitable_for_analysis) {
          private$suggest_alternative_methods(violations, analysis_type)
        } else NULL
      )
    },
    
    #' Assess normality assumption overall
    #'
    #' @param normality_result list. Normality test results
    #'
    #' @return list. Assessment result
    #'
    assess_normality_overall = function(normality_result) {
      
      if (length(normality_result) == 0) {
        return(list(met = FALSE, warning = "No normality tests completed"))
      }
      
      # Look for overall conclusions in each variable
      overall_conclusions <- sapply(normality_result, function(var_result) {
        if ("overall_conclusion" %in% names(var_result)) {
          var_result$overall_conclusion$assumes_normal
        } else {
          NA
        }
      })
      
      if (all(is.na(overall_conclusions))) {
        return(list(
          met = FALSE, 
          warning = "Could not determine normality status",
          recommendation = "Manual inspection of data distribution recommended"
        ))
      }
      
      normality_met <- all(overall_conclusions, na.rm = TRUE)
      
      list(
        met = normality_met,
        warning = if (!normality_met) "Normality assumption appears violated" else NULL,
        recommendation = if (!normality_met) {
          "Consider non-parametric alternatives or data transformation"
        } else NULL
      )
    },
    
    #' Assess homogeneity assumption overall
    #'
    #' @param homogeneity_result list. Homogeneity test results
    #'
    #' @return list. Assessment result
    #'
    assess_homogeneity_overall = function(homogeneity_result) {
      
      if ("overall_conclusion" %in% names(homogeneity_result)) {
        homogeneity_met <- homogeneity_result$overall_conclusion$assumes_homogeneity
        
        list(
          met = homogeneity_met,
          warning = if (!homogeneity_met) "Homogeneity of variance assumption appears violated" else NULL,
          recommendation = if (!homogeneity_met) {
            "Consider Welch's t-test or other methods that don't assume equal variances"
          } else NULL
        )
      } else {
        list(
          met = FALSE,
          warning = "Could not assess homogeneity of variance",
          recommendation = "Manual inspection of group variances recommended"
        )
      }
    },
    
    #' Assess independence assumption overall
    #'
    #' @param independence_result list. Independence test results
    #'
    #' @return list. Assessment result
    #'
    assess_independence_overall = function(independence_result) {
      
      if ("overall_conclusion" %in% names(independence_result)) {
        independence_met <- independence_result$overall_conclusion$statistical_evidence_for_independence
        
        list(
          met = independence_met,
          warning = if (!independence_met) {
            "Statistical evidence suggests potential dependence in data"
          } else {
            "Independence primarily depends on study design"
          },
          recommendation = "Ensure independence through proper study design and data collection"
        )
      } else {
        list(
          met = TRUE,  # Assume met if cannot test
          warning = "Independence assumption not statistically testable",
          recommendation = "Ensure independence through study design"
        )
      }
    },
    
    #' Assess outliers overall
    #'
    #' @param outlier_result list. Outlier detection results
    #'
    #' @return list. Assessment result
    #'
    assess_outliers_overall = function(outlier_result) {
      
      # Count high-confidence outliers across all variables
      total_high_confidence <- 0
      total_observations <- 0
      
      for (var_result in outlier_result) {
        if ("consensus" %in% names(var_result)) {
          total_high_confidence <- total_high_confidence + 
            length(var_result$consensus$high_confidence_outliers)
          
          # Estimate total observations from first method
          if ("iqr_method" %in% names(var_result)) {
            total_observations <- total_observations + 
              length(var_result$iqr_method$outlier_values) + 
              var_result$iqr_method$outlier_count
          }
        }
      }
      
      outlier_proportion <- if (total_observations > 0) {
        total_high_confidence / total_observations
      } else 0
      
      # Consider problematic if >5% are high-confidence outliers
      outliers_problematic <- outlier_proportion > 0.05
      
      list(
        met = !outliers_problematic,
        warning = if (outliers_problematic) {
          paste("High proportion of outliers detected:", 
                round(outlier_proportion * 100, 1), "%")
        } else if (total_high_confidence > 0) {
          paste("Some outliers detected but within acceptable range")
        } else NULL,
        recommendation = if (outliers_problematic) {
          "Consider outlier treatment or robust statistical methods"
        } else if (total_high_confidence > 0) {
          "Review identified outliers for data entry errors or valid extreme values"
        } else NULL
      )
    },
    
    #' Manual implementation of Levene's test
    #'
    #' @param data data.frame. Data with group and response variables
    #'
    #' @return list. Levene's test results
    #'
    manual_levene_test = function(data) {
      
      # Calculate group medians
      group_medians <- by(data$response, data$group, median, na.rm = TRUE)
      
      # Calculate absolute deviations from group medians
      data$abs_dev <- abs(data$response - group_medians[data$group])
      
      # Perform ANOVA on absolute deviations
      anova_result <- anova(lm(abs_dev ~ group, data = data))
      
      list(
        statistic = anova_result$`F value`[1],
        p_value = anova_result$`Pr(>F)`[1],
        df = anova_result$Df,
        method = "Levene's Test (manual implementation)",
        conclusion = anova_result$`Pr(>F)`[1] >= self$config$homogeneity$alpha_level
      )
    },
    
    #' Brown-Forsythe test implementation
    #'
    #' @param data data.frame. Data with group and response variables
    #'
    #' @return list. Brown-Forsythe test results
    #'
    brown_forsythe_test = function(data) {
      
      # Similar to Levene's but uses group medians instead of means
      # This is actually what our manual Levene's test implements
      levene_result <- private$manual_levene_test(data)
      
      levene_result$method <- "Brown-Forsythe Test"
      return(levene_result)
    },
    
    #' Runs test for randomness
    #'
    #' @param x numeric vector. Data series
    #'
    #' @return list. Runs test results
    #'
    runs_test = function(x) {
      
      if (length(x) < 10) {
        return(list(error = "Insufficient data for runs test"))
      }
      
      # Convert to binary sequence (above/below median)
      median_x <- median(x, na.rm = TRUE)
      binary_seq <- as.numeric(x > median_x)
      
      # Count runs
      runs <- 1
      for (i in 2:length(binary_seq)) {
        if (binary_seq[i] != binary_seq[i-1]) {
          runs <- runs + 1
        }
      }
      
      # Calculate expected runs and standard deviation
      n1 <- sum(binary_seq)
      n2 <- length(binary_seq) - n1
      
      if (n1 == 0 || n2 == 0) {
        return(list(error = "All values are on one side of median"))
      }
      
      expected_runs <- (2 * n1 * n2) / (n1 + n2) + 1
      var_runs <- (2 * n1 * n2 * (2 * n1 * n2 - n1 - n2)) / 
                  ((n1 + n2)^2 * (n1 + n2 - 1))
      
      if (var_runs <= 0) {
        return(list(error = "Cannot calculate variance for runs test"))
      }
      
      # Z-score and p-value
      z_score <- (runs - expected_runs) / sqrt(var_runs)
      p_value <- 2 * (1 - pnorm(abs(z_score)))
      
      list(
        statistic = runs,
        expected_runs = expected_runs,
        z_score = z_score,
        p_value = p_value,
        method = "Runs Test for Randomness",
        conclusion = p_value >= self$config$independence$alpha_level,
        interpretation = "Tests whether sequence is random"
      )
    },
    
    #' Assess normality using descriptive statistics
    #'
    #' @param x numeric vector. Data to assess
    #'
    #' @return list. Descriptive normality assessment
    #'
    assess_normality_descriptive = function(x) {
      
      if (length(x) < 4) {
        return(list(error = "Insufficient data for descriptive assessment"))
      }
      
      # Calculate skewness and kurtosis
      mean_x <- mean(x)
      sd_x <- sd(x)
      n <- length(x)
      
      # Skewness
      skewness <- sum((x - mean_x)^3) / (n * sd_x^3)
      
      # Kurtosis (excess kurtosis)
      kurtosis <- sum((x - mean_x)^4) / (n * sd_x^4) - 3
      
      # Interpret skewness and kurtosis
      skew_interpretation <- if (abs(skewness) < 0.5) {
        "Approximately symmetric"
      } else if (abs(skewness) < 1.0) {
        "Moderately skewed"
      } else {
        "Highly skewed"
      }
      
      kurt_interpretation <- if (abs(kurtosis) < 0.5) {
        "Normal kurtosis"
      } else if (kurtosis > 0.5) {
        "Heavy-tailed (leptokurtic)"
      } else {
        "Light-tailed (platykurtic)"
      }
      
      # Overall assessment
      likely_normal <- abs(skewness) < self$config$normality$descriptive_thresholds$skewness &&
                       abs(kurtosis) < self$config$normality$descriptive_thresholds$kurtosis
      
      list(
        skewness = skewness,
        kurtosis = kurtosis,
        skew_interpretation = skew_interpretation,
        kurt_interpretation = kurt_interpretation,
        likely_normal = likely_normal,
        sample_size = n
      )
    },
    
    #' Interpret variance ratio
    #'
    #' @param ratio numeric. Variance ratio (max/min)
    #'
    #' @return character. Interpretation
    #'
    interpret_variance_ratio = function(ratio) {
      
      if (ratio <= 2) {
        "Variances are quite similar"
      } else if (ratio <= 4) {
        "Moderate difference in variances"
      } else if (ratio <= 10) {
        "Large difference in variances"
      } else {
        "Very large difference in variances"
      }
    }
  )
)

Intelligent Method Selection

Statistical Method Selector

Create an intelligent system for selecting optimal statistical methods:

# File: R/statistical_method_selector.R

#' Statistical Method Selector
#'
#' @description Intelligent method selection system that chooses optimal
#' statistical approaches based on data characteristics and assumption test results.
#'
#' @export
StatisticalMethodSelector <- R6::R6Class(
  "StatisticalMethodSelector",
  
  public = list(
    
    #' @field config method selection configuration
    config = NULL,
    
    #' @field method_registry available statistical methods
    method_registry = NULL,
    
    #' Initialize method selector
    #'
    #' @param config list. Method selection configuration
    #'
    initialize = function(config = list()) {
      self$config <- private$default_selector_config(config)
      self$method_registry <- private$initialize_method_registry()
    },
    
    #' Select optimal statistical method
    #'
    #' @param data data.frame. Analysis data
    #' @param analysis_type character. Type of analysis requested
    #' @param assumption_results AssumptionTestResults. Assumption test results
    #' @param parameters list. Analysis parameters
    #'
    #' @return StatisticalMethod. Selected method with justification
    #'
    select_optimal_method = function(data, analysis_type, assumption_results, parameters = list()) {
      
      # Get available methods for analysis type
      available_methods <- private$get_available_methods(analysis_type)
      
      if (length(available_methods) == 0) {
        stop(paste("No methods available for analysis type:", analysis_type))
      }
      
      # Score each method based on assumption compliance and other factors
      method_scores <- list()
      
      for (method_name in available_methods) {
        method_info <- self$method_registry[[analysis_type]][[method_name]]
        
        score <- private$score_method(
          method_info = method_info,
          data = data,
          assumption_results = assumption_results,
          parameters = parameters
        )
        
        method_scores[[method_name]] <- score
      }
      
      # Select best method
      best_method_name <- names(method_scores)[which.max(sapply(method_scores, function(x) x$total_score))]
      best_score <- method_scores[[best_method_name]]
      
      # Create method object
      StatisticalMethod$new(
        method_name = best_method_name,
        analysis_type = analysis_type,
        method_info = self$method_registry[[analysis_type]][[best_method_name]],
        selection_score = best_score,
        assumption_compliance = best_score$assumption_compliance,
        selection_rationale = private$generate_selection_rationale(
          best_method_name, 
          best_score, 
          method_scores,
          assumption_results
        ),
        alternative_methods = private$get_alternative_recommendations(
          method_scores, 
          best_method_name
        )
      )
    }
  ),
  
  private = list(
    
    #' Default method selector configuration
    #'
    #' @param config list. User configuration
    #'
    #' @return list. Complete configuration
    #'
    default_selector_config = function(config) {
      
      default_config <- list(
        preference_weights = list(
          assumption_compliance = 0.4,
          robustness = 0.3,
          statistical_power = 0.2,
          interpretability = 0.1
        ),
        
        assumption_penalties = list(
          normality_violation = -20,
          homogeneity_violation = -15,
          independence_violation = -30,
          outlier_presence = -10
        ),
        
        robustness_bonuses = list(
          nonparametric = 15,
          robust_parametric = 10,
          bootstrap_based = 12
        ),
        
        sample_size_considerations = list(
          small_sample_threshold = 30,
          very_small_threshold = 10,
          small_sample_preference = "nonparametric"
        )
      )
      
      modifyList(default_config, config)
    },
    
    #' Initialize method registry
    #'
    #' @return list. Available methods by analysis type
    #'
    initialize_method_registry = function() {
      
      list(
        independent_ttest = list(
          independent_ttest_students = list(
            name = "Student's Independent Samples t-Test",
            type = "parametric",
            required_assumptions = c("normality", "homogeneity", "independence"),
            statistical_power = "high",
            interpretability = "high",
            robustness = "low",
            sample_size_requirements = list(min = 6, recommended = 30),
            effect_size_measures = c("cohens_d", "glass_delta"),
            description = "Classic parametric test assuming equal variances"
          ),
          
          independent_ttest_welch = list(
            name = "Welch's Independent Samples t-Test",
            type = "parametric_robust",
            required_assumptions = c("normality", "independence"),
            statistical_power = "high",
            interpretability = "high", 
            robustness = "medium",
            sample_size_requirements = list(min = 6, recommended = 30),
            effect_size_measures = c("cohens_d", "glass_delta"),
            description = "Robust parametric test not assuming equal variances"
          ),
          
          mann_whitney_u = list(
            name = "Mann-Whitney U Test",
            type = "nonparametric",
            required_assumptions = c("independence"),
            statistical_power = "medium",
            interpretability = "medium",
            robustness = "high",
            sample_size_requirements = list(min = 6, recommended = 20),
            effect_size_measures = c("rank_biserial_r", "common_language_effect"),
            description = "Distribution-free test comparing medians"
          ),
          
          bootstrap_ttest = list(
            name = "Bootstrap t-Test",
            type = "resampling",
            required_assumptions = c("independence"),
            statistical_power = "high",
            interpretability = "medium",
            robustness = "high",
            sample_size_requirements = list(min = 10, recommended = 50),
            effect_size_measures = c("cohens_d", "bootstrap_ci"),
            description = "Resampling-based test robust to distributional assumptions"
          )
        )
      )
    },
    
    #' Get available methods for analysis type
    #'
    #' @param analysis_type character. Type of analysis
    #'
    #' @return character vector. Available method names
    #'
    get_available_methods = function(analysis_type) {
      
      if (analysis_type %in% names(self$method_registry)) {
        names(self$method_registry[[analysis_type]])
      } else {
        character(0)
      }
    },
    
    #' Score a statistical method
    #'
    #' @param method_info list. Method information
    #' @param data data.frame. Analysis data
    #' @param assumption_results AssumptionTestResults. Assumption test results
    #' @param parameters list. Analysis parameters
    #'
    #' @return list. Method scoring results
    #'
    score_method = function(method_info, data, assumption_results, parameters) {
      
      scores <- list()
      
      # Assumption compliance score
      assumption_score <- private$score_assumption_compliance(
        method_info$required_assumptions,
        assumption_results
      )
      scores$assumption_compliance <- assumption_score
      
      # Robustness score
      robustness_score <- private$score_robustness(method_info, data)
      scores$robustness <- robustness_score
      
      # Statistical power score
      power_score <- private$score_statistical_power(method_info, data, parameters)
      scores$statistical_power <- power_score
      
      # Interpretability score
      interpretability_score <- private$score_interpretability(method_info, parameters)
      scores$interpretability <- interpretability_score
      
      # Sample size appropriateness
      sample_size_score <- private$score_sample_size_appropriateness(method_info, data)
      scores$sample_size_appropriateness <- sample_size_score
      
            # Calculate weighted total score
      weights <- self$config$preference_weights
      
      total_score <- (
        assumption_score * weights$assumption_compliance +
        robustness_score * weights$robustness +
        power_score * weights$statistical_power +
        interpretability_score * weights$interpretability
      )
      
      list(
        assumption_compliance = assumption_score,
        robustness = robustness_score,
        statistical_power = power_score,
        interpretability = interpretability_score,
        sample_size_appropriateness = sample_size_score,
        total_score = total_score,
        method_info = method_info
      )
    },
    
    #' Score assumption compliance
    #'
    #' @param required_assumptions character vector. Required assumptions
    #' @param assumption_results AssumptionTestResults. Test results
    #'
    #' @return numeric. Assumption compliance score
    #'
    score_assumption_compliance = function(required_assumptions, assumption_results) {
      
      base_score <- 100
      violated_assumptions <- assumption_results$overall_assessment$violations
      
      for (assumption in required_assumptions) {
        if (assumption %in% violated_assumptions) {
          penalty <- self$config$assumption_penalties[[paste0(assumption, "_violation")]] %||% -10
          base_score <- base_score + penalty
        }
      }
      
      # Bonus for methods that don't require problematic assumptions
      if (!"normality" %in% required_assumptions && "normality" %in% violated_assumptions) {
        base_score <- base_score + 15
      }
      
      if (!"homogeneity" %in% required_assumptions && "homogeneity" %in% violated_assumptions) {
        base_score <- base_score + 10
      }
      
      max(0, base_score)
    },
    
    #' Score robustness
    #'
    #' @param method_info list. Method information
    #' @param data data.frame. Analysis data
    #'
    #' @return numeric. Robustness score
    #'
    score_robustness = function(method_info, data) {
      
      base_score <- 50
      
      # Robustness bonuses
      if (method_info$type == "nonparametric") {
        base_score <- base_score + self$config$robustness_bonuses$nonparametric
      } else if (method_info$type == "parametric_robust") {
        base_score <- base_score + self$config$robustness_bonuses$robust_parametric
      } else if (method_info$type == "resampling") {
        base_score <- base_score + self$config$robustness_bonuses$bootstrap_based
      }
      
      # Additional robustness considerations
      if (method_info$robustness == "high") {
        base_score <- base_score + 10
      } else if (method_info$robustness == "low") {
        base_score <- base_score - 10
      }
      
      max(0, base_score)
    },
    
    #' Score statistical power
    #'
    #' @param method_info list. Method information
    #' @param data data.frame. Analysis data
    #' @param parameters list. Analysis parameters
    #'
    #' @return numeric. Statistical power score
    #'
    score_statistical_power = function(method_info, data, parameters) {
      
      base_score <- switch(method_info$statistical_power,
        "high" = 80,
        "medium" = 60,
        "low" = 40,
        50  # default
      )
      
      # Adjust for sample size
      n <- nrow(data)
      if (n < self$config$sample_size_considerations$very_small_threshold) {
        base_score <- base_score - 20
      } else if (n < self$config$sample_size_considerations$small_sample_threshold) {
        base_score <- base_score - 10
      }
      
      max(0, base_score)
    },
    
    #' Score interpretability
    #'
    #' @param method_info list. Method information
    #' @param parameters list. Analysis parameters
    #'
    #' @return numeric. Interpretability score
    #'
    score_interpretability = function(method_info, parameters) {
      
      base_score <- switch(method_info$interpretability,
        "high" = 80,
        "medium" = 60,
        "low" = 40,
        50  # default
      )
      
      # Bonus for familiar methods in clinical contexts
      if ("clinical_context" %in% names(parameters) && parameters$clinical_context) {
        if (grepl("t-test", method_info$name, ignore.case = TRUE)) {
          base_score <- base_score + 10
        }
      }
      
      max(0, base_score)
    },
    
    #' Score sample size appropriateness
    #'
    #' @param method_info list. Method information
    #' @param data data.frame. Analysis data
    #'
    #' @return numeric. Sample size appropriateness score
    #'
    score_sample_size_appropriateness = function(method_info, data) {
      
      n <- nrow(data)
      min_required <- method_info$sample_size_requirements$min %||% 6
      recommended <- method_info$sample_size_requirements$recommended %||% 30
      
      if (n < min_required) {
        return(0)  # Method not suitable
      } else if (n < recommended) {
        return(50)  # Below recommended but acceptable
      } else {
        return(80)  # Adequate sample size
      }
    },
    
    #' Generate selection rationale
    #'
    #' @param selected_method character. Selected method name
    #' @param selected_score list. Selected method score details
    #' @param all_scores list. All method scores
    #' @param assumption_results AssumptionTestResults. Assumption results
    #'
    #' @return character. Selection rationale
    #'
    generate_selection_rationale = function(selected_method, selected_score, all_scores, assumption_results) {
      
      method_info <- selected_score$method_info
      violations <- assumption_results$overall_assessment$violations
      
      rationale_parts <- c()
      
      # Primary selection reason
      if (selected_score$assumption_compliance >= 80) {
        rationale_parts <- c(rationale_parts, 
                            paste("Selected", method_info$name, "because all required assumptions are met"))
      } else if (method_info$type == "nonparametric" && "normality" %in% violations) {
        rationale_parts <- c(rationale_parts, 
                            paste("Selected", method_info$name, "because it doesn't require normality assumptions"))
      } else if (method_info$type == "parametric_robust" && "homogeneity" %in% violations) {
        rationale_parts <- c(rationale_parts, 
                            paste("Selected", method_info$name, "because it's robust to unequal variances"))
      } else {
        rationale_parts <- c(rationale_parts, 
                            paste("Selected", method_info$name, "as the best available option"))
      }
      
      # Additional justification
      if (selected_score$robustness >= 70) {
        rationale_parts <- c(rationale_parts, "This method provides good robustness to assumption violations")
      }
      
      if (selected_score$statistical_power >= 70) {
        rationale_parts <- c(rationale_parts, "This method maintains good statistical power")
      }
      
      # Warnings if needed
      if (length(violations) > 0) {
        violated_text <- paste(violations, collapse = ", ")
        rationale_parts <- c(rationale_parts, 
                            paste("Note: Some assumptions are violated (", violated_text, "), but this method is relatively robust"))
      }
      
      paste(rationale_parts, collapse = ". ")
    },
    
    #' Get alternative method recommendations
    #'
    #' @param all_scores list. All method scores
    #' @param selected_method character. Selected method name
    #'
    #' @return list. Alternative method recommendations
    #'
    get_alternative_recommendations = function(all_scores, selected_method) {
      
      # Remove selected method and sort by score
      alternative_scores <- all_scores[names(all_scores) != selected_method]
      sorted_alternatives <- alternative_scores[order(sapply(alternative_scores, function(x) x$total_score), decreasing = TRUE)]
      
      # Return top 2 alternatives with brief justification
      alternatives <- list()
      
      for (i in 1:min(2, length(sorted_alternatives))) {
        alt_name <- names(sorted_alternatives)[i]
        alt_score <- sorted_alternatives[[alt_name]]
        alt_info <- alt_score$method_info
        
        # Brief justification for alternative
        justification <- if (alt_info$type == "nonparametric") {
          "Distribution-free alternative"
        } else if (alt_info$type == "resampling") {
          "Bootstrap-based robust alternative"
        } else if (alt_info$type == "parametric_robust") {
          "Parametric robust alternative"
        } else {
          "Classical parametric alternative"
        }
        
        alternatives[[alt_name]] <- list(
          name = alt_info$name,
          type = alt_info$type,
          score = alt_score$total_score,
          justification = justification
        )
      }
      
      alternatives
    }
  )
)

Implementing Statistical Rigor in Practice

Integration with Enhanced t-Test Application

Transform the existing sophisticated t-test application to leverage the statistical rigor framework:

# Enhanced server logic integrating statistical rigor
enhanced_ttest_server <- function(id, audit_logger = NULL) {
  moduleServer(id, function(input, output, session) {
    
    # Initialize statistical testing engine
    testing_engine <- StatisticalTestingEngine$new(
      config = list(
        regulatory_compliance = list(
          standards = c("FDA", "ICH_E9"),
          documentation_level = "comprehensive"
        )
      ),
      audit_logger = audit_logger
    )
    
    # Enhanced analysis execution
    observeEvent(input$run_test, {
      
      req(dataset())
      
      showNotification("Conducting rigorous statistical analysis...", 
                      type = "message", id = "analyzing")
      
      # Prepare comprehensive analysis
      analysis_result <- testing_engine$conduct_analysis(
        data = dataset(),
        analysis_type = "independent_ttest",
        parameters = list(
          alternative = input$alternative,
          conf_level = input$conf_level,
          clinical_context = TRUE
        ),
        context = list(
          application = "enhanced_ttest",
          user_id = session$userData$user_id %||% "anonymous"
        )
      )
      
      values$analysis_result <- analysis_result
      removeNotification("analyzing")
    })
    
    # Display comprehensive results
    output$statistical_results <- renderUI({
      
      req(values$analysis_result)
      result <- values$analysis_result
      
      if (!result$success) {
        return(div(class = "alert alert-danger",
                  h4("Analysis Issues"),
                  p(paste(result$errors, collapse = "; "))))
      }
      
      tagList(
        # Executive Summary
        card(
          card_header("Statistical Analysis Summary"),
          card_body(
            div(class = "alert alert-info",
                h5("Executive Summary"),
                p(result$get_executive_summary())
            ),
            
            # Key Results Dashboard
            div(class = "row text-center",
                div(class = "col-md-3",
                    div(class = "card bg-light",
                        div(class = "card-body",
                            h6("p-value"),
                            h4(format.pval(result$primary_analysis$p_value, digits = 4)),
                            small(class = "text-muted", 
                                 if (result$primary_analysis$p_value < 0.05) "Significant" else "Not Significant")
                        )
                    )
                ),
                div(class = "col-md-3",
                    div(class = "card bg-light",
                        div(class = "card-body",
                            h6("Effect Size"),
                            h4(round(result$effect_analysis$primary_effect_size$value, 3)),
                            small(class = "text-muted", result$effect_analysis$primary_effect_size$interpretation)
                        )
                    )
                ),
                div(class = "col-md-3",
                    div(class = "card bg-light",
                        div(class = "card-body",
                            h6("Method Used"),
                            h4(abbr(result$method_selection$method_info$type, 
                                   title = result$method_selection$method_info$name)),
                            small(class = "text-muted", "Selected Method")
                        )
                    )
                ),
                div(class = "col-md-3",
                    div(class = "card bg-light",
                        div(class = "card-body",
                            h6("Assumptions"),
                            h4(if (result$assumption_tests$overall_assessment$suitable) {
                              icon("check-circle", class = "text-success")
                            } else {
                              icon("exclamation-triangle", class = "text-warning")
                            }),
                            small(class = "text-muted", 
                                 if (result$assumption_tests$overall_assessment$suitable) "Met" else "Issues")
                        )
                    )
                )
            )
          )
        ),
        
        # Method Selection and Justification
        card(
          class = "mt-3",
          card_header("Method Selection and Validation"),
          card_body(
            h5(result$method_selection$method_info$name),
            p(class = "text-muted", result$method_selection$method_info$description),
            
            div(class = "alert alert-light",
                strong("Selection Rationale: "),
                result$method_selection$selection_rationale
            ),
            
            # Assumption Test Summary
            if (length(result$assumption_tests$overall_assessment$violations) > 0) {
              div(class = "alert alert-warning",
                  strong("Assumption Violations Detected: "),
                  paste(result$assumption_tests$overall_assessment$violations, collapse = ", "),
                  br(),
                  "The selected method accounts for these violations and provides robust results."
              )
            } else {
              div(class = "alert alert-success",
                  strong("All Required Assumptions Met: "),
                  "Statistical prerequisites are satisfied for reliable analysis."
              )
            }
          )
        )
      )
    })
    
    # Enhanced assumption testing display
    output$assumption_results <- renderPrint({
      
      req(values$analysis_result)
      result <- values$analysis_result
      
      if (!result$success) return("Analysis failed - assumption testing unavailable")
      
      assumption_tests <- result$assumption_tests
      
      cat("COMPREHENSIVE ASSUMPTION TESTING REPORT\n")
      cat("=====================================\n\n")
      
      # Overall Assessment
      cat("OVERALL ASSESSMENT:\n")
      cat("------------------\n")
      if (assumption_tests$overall_assessment$suitable) {
        cat("✓ All required assumptions are met for reliable analysis\n\n")
      } else {
        cat("⚠ Some assumptions are violated:\n")
        for (violation in assumption_tests$overall_assessment$violations) {
          cat("  • ", violation, "\n")
        }
        cat("\nHowever, the selected method is robust to these violations.\n\n")
      }
      
      # Detailed Results by Assumption
      for (assumption_name in names(assumption_tests$assumption_results)) {
        assumption_result <- assumption_tests$assumption_results[[assumption_name]]
        
        cat(toupper(assumption_name), " TESTING:\n")
        cat(paste(rep("-", nchar(assumption_name) + 9), collapse = ""), "\n")
        
        if ("error" %in% names(assumption_result)) {
          cat("Error:", assumption_result$error, "\n\n")
          next
        }
        
        # Print assumption-specific results
        if (assumption_name == "normality") {
          for (var_name in names(assumption_result)) {
            if (var_name == "error") next
            
            var_result <- assumption_result[[var_name]]
            cat("Variable:", var_name, "\n")
            
            if ("shapiro_wilk" %in% names(var_result)) {
              sw <- var_result$shapiro_wilk
              cat("  Shapiro-Wilk: W =", round(sw$statistic, 4), 
                  ", p =", round(sw$p_value, 4))
              if (sw$conclusion) cat(" ✓") else cat(" ✗")
              cat("\n")
            }
            
            if ("overall_conclusion" %in% names(var_result)) {
              conclusion <- var_result$overall_conclusion
              cat("  Overall conclusion:", 
                  if (conclusion$assumes_normal) "Normal distribution" else "Non-normal distribution")
              cat(" (", conclusion$n_tests, " tests)\n")
            }
            cat("\n")
          }
        }
        
        if (assumption_name == "homogeneity") {
          if ("levene" %in% names(assumption_result)) {
            levene <- assumption_result$levene
            cat("Levene's Test: F =", round(levene$statistic, 4), 
                ", p =", round(levene$p_value, 4))
            if (levene$conclusion) cat(" ✓") else cat(" ✗")
            cat("\n")
          }
          
          if ("overall_conclusion" %in% names(assumption_result)) {
            conclusion <- assumption_result$overall_conclusion
            cat("Overall conclusion:", conclusion$recommendation, "\n")
          }
          cat("\n")
        }
        
        if (assumption_name == "outliers") {
          total_outliers <- 0
          for (var_name in names(assumption_result)) {
            var_result <- assumption_result[[var_name]]
            if ("consensus" %in% names(var_result)) {
              n_outliers <- length(var_result$consensus$high_confidence_outliers)
              total_outliers <- total_outliers + n_outliers
              if (n_outliers > 0) {
                cat("Variable", var_name, ":", n_outliers, "high-confidence outliers detected\n")
              }
            }
          }
          if (total_outliers == 0) {
            cat("No significant outliers detected across variables\n")
          }
          cat("\n")
        }
      }
      
      # Recommendations
      if (length(assumption_tests$overall_assessment$recommendations) > 0) {
        cat("RECOMMENDATIONS:\n")
        cat("---------------\n")
        for (rec in assumption_tests$overall_assessment$recommendations) {
          cat("•", rec, "\n")
        }
        cat("\n")
      }
    })
    
    # Enhanced interpretation guidance
    output$interpretation_guidance <- renderUI({
      
      req(values$analysis_result)
      result <- values$analysis_result
      
      if (!result$success) return(NULL)
      
      interpretation <- result$interpretation
      
      tagList(
        card(
          card_header("Statistical Interpretation and Clinical Guidance"),
          card_body(
            
            # Statistical Significance Section
            div(class = "mb-4",
                h5("Statistical Significance"),
                div(
                  class = if (interpretation$statistical_significance$is_significant) {
                    "alert alert-success"
                  } else {
                    "alert alert-secondary"
                  },
                  p(interpretation$statistical_significance$interpretation)
                )
            ),
            
            # Effect Size and Practical Importance
            div(class = "mb-4",
                h5("Effect Size and Practical Importance"),
                div(class = "alert alert-info",
                    p(strong("Effect Size: "), 
                      interpretation$effect_size$magnitude, 
                      " (", round(result$effect_analysis$primary_effect_size$value, 3), ")"),
                    p(strong("Practical Importance: "), 
                      interpretation$effect_size$practical_importance$magnitude),
                    p(interpretation$effect_size$practical_importance$recommendation)
                )
            ),
            
            # Overall Conclusion
            div(class = "mb-4",
                h5("Overall Conclusion"),
                div(class = "alert alert-primary",
                    p(interpretation$conclusion$summary)
                )
            ),
            
            # Limitations and Considerations
            if (length(interpretation$limitations) > 0) {
              div(class = "mb-4",
                  h5("Limitations and Considerations"),
                  div(class = "alert alert-light",
                      tags$ul(
                        lapply(interpretation$limitations, function(lim) tags$li(lim))
                      )
                  )
              )
            }
          )
        )
      )
    })
  })
}


Common Questions About Statistical Rigor

Enterprise applications require statistical validity that can withstand regulatory scrutiny, peer review, and legal challenges. Comprehensive assumption testing provides documented evidence that statistical methods are appropriate for the data and analysis context. This documentation becomes crucial for regulatory submissions, clinical trial reports, and publications where statistical methodology must be transparent and defensible. Additionally, assumption violations can lead to incorrect conclusions with significant business or clinical consequences, making thorough validation essential for responsible decision-making.

Intelligent method selection eliminates human bias and inconsistency in statistical method choice while ensuring optimal approaches for specific data characteristics. Manual selection often relies on default methods or analyst preferences, potentially missing robust alternatives when assumptions are violated. Automated selection considers multiple factors simultaneously - assumption compliance, statistical power, robustness, and interpretability - using consistent, documented criteria. This approach also provides audit trails and justification required for regulatory compliance while reducing analysis time and improving reproducibility across different analysts and studies.

This framework addresses specific requirements of regulated industries including FDA guidance compliance, ICH E9 statistical principles, and Good Clinical Practice standards. The comprehensive documentation automatically generated meets regulatory expectations for statistical analysis plans, assumption testing evidence, and method selection justification. The audit trail capabilities support 21 CFR Part 11 requirements for electronic records, while the sensitivity analysis features address regulatory concerns about analytical robustness. Additionally, the clinical significance assessment and effect size interpretation provide context essential for regulatory decision-making and clinical interpretation.

The system recognizes that real-world data often violates theoretical assumptions and provides intelligent responses rather than simply flagging violations. When assumptions are violated, the method selector automatically identifies robust alternatives that remain valid under the observed data conditions. The sensitivity analysis quantifies how assumption violations affect conclusions, while the interpretation guidance explains the practical implications. This approach enables confident analysis of imperfect data while maintaining statistical rigor and providing transparent documentation of analytical decisions and their justifications.

The framework is designed for users with basic statistical knowledge who need enterprise-grade rigor without deep statistical programming expertise. Users should understand fundamental concepts like p-values, effect sizes, and basic assumptions, but the system provides interpretation guidance and context-aware explanations. For advanced users, the framework offers complete customization and detailed diagnostic information. The key advantage is that it elevates the statistical rigor of any analysis regardless of user expertise level, while providing educational value through comprehensive explanations and best practice guidance.

Test Your Understanding

Which components are essential for enterprise-grade statistical rigor in clinical applications? Select all that apply:

  1. Comprehensive assumption testing with multiple methods
  2. Intelligent method selection based on data characteristics
  3. Sensitivity analysis across alternative approaches
  4. Regulatory compliance documentation
  5. User-friendly interface design
  6. Automated interpretation guidance
  • Consider what regulatory bodies require for statistical submissions
  • Think about what makes analysis defensible under scrutiny
  • Focus on components that ensure analytical validity

A, B, C, D, and F are all essential components.

Essential components explained:

  • A) Comprehensive assumption testing: Required to validate that statistical methods are appropriate for the data and provide documented evidence for regulatory review
  • B) Intelligent method selection: Ensures optimal analytical approaches while eliminating bias and providing audit trails for decision rationale
  • C) Sensitivity analysis: Demonstrates analytical robustness and addresses regulatory concerns about conclusion stability across methods
  • D) Regulatory compliance documentation: Essential for FDA submissions, clinical trials, and peer review processes
  • F) Automated interpretation guidance: Provides context-aware explanations essential for clinical significance assessment and decision-making

E) User-friendly interface design is important for usability but not essential for statistical rigor itself. The rigor comes from the analytical framework, not the presentation layer.

Your data violates normality assumptions but meets independence and has equal variances. The intelligent method selector chooses Welch’s t-test over Student’s t-test. Why might this decision be suboptimal, and what would be a better choice?

  1. Welch’s t-test is always preferred over Student’s t-test
  2. Should use Mann-Whitney U test since normality is violated
  3. Student’s t-test would be better since variances are equal
  4. Should use bootstrap methods for any assumption violations
  • Consider which assumptions each method requires
  • Think about the trade-offs between different approaches when assumptions are partially met
  • Remember that robustness vs. power is a key consideration

B) Should use Mann-Whitney U test since normality is violated

Detailed reasoning:

When normality is violated, the most appropriate response is to use a method that doesn’t assume normality, regardless of whether other assumptions are met. Here’s why:

  • Welch’s t-test still assumes normality - it only relaxes the equal variance assumption
  • Student’s t-test assumes both normality and equal variances - having equal variances doesn’t help if normality fails
  • Mann-Whitney U test only requires independence and ordinal data - it’s robust to non-normality
  • Bootstrap methods are also appropriate but may be unnecessarily complex for this scenario

The optimal method selection should prioritize assumption compliance first, then consider power and interpretability among valid options. A properly configured intelligent selector would weight assumption violations heavily and select the Mann-Whitney U test in this scenario.

You’re implementing this statistical rigor framework in a pharmaceutical company. The statisticians are concerned about losing control over method selection, while regulatory affairs wants comprehensive documentation. How should you configure the system to address both concerns?

  • Consider how to balance automation with expert oversight
  • Think about documentation requirements for regulatory compliance
  • Consider different user roles and their needs

Implement a hybrid approach with expert oversight and comprehensive audit trails:

Configuration strategy:

  1. Expert Review Mode: Allow statisticians to review and override automated method selection with required justification that becomes part of the audit trail

  2. Tiered Automation:

    • Fully automated for routine analyses with clear data characteristics
    • Expert consultation required for edge cases or conflicting indicators
    • Manual override available with documented rationale
  3. Comprehensive Documentation: Generate regulatory-compliant reports regardless of selection method (automated vs. manual) including:

    • Complete assumption testing evidence
    • Method selection rationale (whether automated or expert-driven)
    • Sensitivity analysis results
    • Expert review comments and overrides
  4. Role-Based Configuration:

    • Statisticians: Full access to detailed diagnostics, override capabilities, and custom configuration
    • Regulatory Affairs: Focus on compliance documentation and audit trail completeness
    • Clinical Teams: Simplified interface with comprehensive interpretation guidance

This approach maintains statistical expertise while ensuring consistent rigor and documentation standards required for regulatory compliance.

Conclusion

Statistical rigor forms the cornerstone of credible biostatistics applications, transforming routine analyses into enterprise-grade systems that meet the demanding standards of regulated industries. This comprehensive framework elevates your t-test application from a basic statistical tool to a sophisticated analytical platform capable of supporting regulatory submissions, clinical decision-making, and peer-reviewed research.

The automated assumption testing, intelligent method selection, and comprehensive documentation systems you’ve implemented provide the foundation for any statistical application requiring professional reliability. These patterns extend far beyond t-tests to encompass the full spectrum of biostatistical analyses while maintaining the accessibility and user experience that stakeholders expect from modern analytical tools.

Your enhanced application now demonstrates how enterprise development transcends basic functionality to address the complex requirements of real-world statistical practice, where analytical decisions must be defensible, reproducible, and aligned with regulatory standards while remaining accessible to clinical and research teams.

Next Steps

Based on your mastery of statistical rigor principles, here are the recommended paths for continuing your enterprise development journey:

Immediate Next Steps (Complete These First)

  • Advanced Visualizations for Statistical Results - Transform your rigorous analyses into publication-ready visualizations that communicate statistical findings effectively
  • Testing Framework and Validation - Implement comprehensive testing strategies that validate your statistical computations and ensure reliability across scenarios
  • Practice Exercise: Extend your statistical rigor framework to include ANOVA or regression analysis, implementing the same comprehensive validation and intelligent method selection patterns

Building Your Enterprise Platform (Choose Your Focus)

For Visualization Excellence: - Professional Statistical Plot Generation - Building Interactive Dashboards

For Production Reliability:

For Clinical Integration:

Long-term Goals (2-4 Weeks)

  • Develop a complete biostatistics platform with multiple statistical modules using your rigor framework
  • Create enterprise deployment strategies for regulated environments with full validation documentation
  • Build custom statistical method libraries that extend the framework for specialized clinical applications
  • Contribute to the biostatistics community by sharing validated, enterprise-grade statistical tools
Back to top

Reuse

Citation

BibTeX citation:
@online{kassambara2025,
  author = {Kassambara, Alboukadel},
  title = {Statistical {Rigor} and {Assumption} {Testing:} {Enterprise}
    {Statistical} {Validation}},
  date = {2025-05-23},
  url = {https://www.datanovia.com/learn/tools/shiny-apps/enterprise-development/statistical-rigor.html},
  langid = {en}
}
For attribution, please cite this work as:
Kassambara, Alboukadel. 2025. “Statistical Rigor and Assumption Testing: Enterprise Statistical Validation.” May 23, 2025. https://www.datanovia.com/learn/tools/shiny-apps/enterprise-development/statistical-rigor.html.