Key Takeaways
- Professional UI Components: Transform basic interfaces with shinydashboard, shinyWidgets, and bs4Dash for enterprise-grade applications
- Advanced Data Visualization: Integrate plotly, leaflet, and visNetwork for interactive charts, maps, and network diagrams that engage users
- Enhanced User Experience: Implement file uploads, data tables, and form validation with DT, shinyFiles, and shinyvalidate packages
- Authentication and Security: Add user management and access control with shinymanager, firebase, and custom authentication solutions
- Development Acceleration: Boost productivity with golem, rhino, and testing frameworks that streamline professional development workflows
Introduction
The power of Shiny extends far beyond its core functionality through a rich ecosystem of packages and extensions that transform basic applications into sophisticated, professional web experiences. While base Shiny provides the foundation for reactive web applications, these additional packages unlock advanced UI components, enhanced data visualizations, robust authentication systems, and development tools that accelerate your workflow.
The challenge for developers lies not in finding extensions—the R community has created hundreds of Shiny-related packages—but in selecting the right combination that balances functionality, reliability, and maintainability. Some packages have become industry standards for specific use cases, while others offer cutting-edge features that can differentiate your applications.
This comprehensive guide curates the most valuable Shiny packages and extensions, organized by functionality and use case. You’ll discover battle-tested libraries for professional dashboards, innovative visualization tools, productivity enhancers, and specialized extensions that solve common development challenges. Each recommendation includes practical implementation examples, best practices, and guidance on when to use each tool in your projects.
Essential UI and Layout Enhancement Packages
shinydashboard: Professional Dashboard Framework
The shinydashboard
package transforms Shiny applications into polished, professional dashboards with minimal effort. It’s become the de facto standard for business intelligence and administrative interfaces.
Core Capabilities:
library(shiny)
library(shinydashboard)
# Professional dashboard structure
<- dashboardPage(
ui dashboardHeader(title = "Business Analytics Dashboard"),
dashboardSidebar(
sidebarMenu(
menuItem("Overview", tabName = "overview", icon = icon("dashboard")),
menuItem("Sales Analysis", tabName = "sales", icon = icon("chart-line")),
menuItem("User Reports", tabName = "users", icon = icon("users")),
menuItem("Settings", tabName = "settings", icon = icon("cogs"))
)
),
dashboardBody(
tabItems(
tabItem(tabName = "overview",
fluidRow(
# Value boxes for key metrics
valueBoxOutput("total_revenue"),
valueBoxOutput("new_customers"),
valueBoxOutput("conversion_rate")
),fluidRow(
box(title = "Revenue Trend", status = "primary", solidHeader = TRUE,
plotOutput("revenue_plot"), width = 8),
box(title = "Quick Actions", status = "warning", solidHeader = TRUE,
actionButton("refresh_data", "Refresh Data", class = "btn-primary"),
br(), br(),
downloadButton("export_report", "Export Report"), width = 4)
)
),
tabItem(tabName = "sales",
h2("Sales Analysis Content")
)
)
)
)
<- function(input, output) {
server # Value boxes for key metrics
$total_revenue <- renderValueBox({
outputvalueBox(
value = "$1.2M",
subtitle = "Total Revenue",
icon = icon("dollar-sign"),
color = "green"
)
})
$new_customers <- renderValueBox({
outputvalueBox(
value = "1,247",
subtitle = "New Customers",
icon = icon("user-plus"),
color = "blue"
)
})
$conversion_rate <- renderValueBox({
outputvalueBox(
value = "12.5%",
subtitle = "Conversion Rate",
icon = icon("percentage"),
color = "yellow"
)
})
}
shinyApp(ui, server)
Best Use Cases:
- Executive dashboards and business intelligence
- Administrative interfaces and control panels
- Data monitoring and reporting systems
- Any application requiring professional appearance
bs4Dash: Modern Bootstrap 4 Dashboard
For applications requiring the latest design trends, bs4Dash
provides Bootstrap 4-based components with modern aesthetics and enhanced functionality.
Advanced Features:
library(bs4Dash)
<- dashboardPage(
ui dark = TRUE, # Dark theme support
header = dashboardHeader(
title = dashboardBrand(
title = "Modern Dashboard",
color = "primary",
href = "https://example.com",
image = "logo.png"
)
),
sidebar = dashboardSidebar(
skin = "light",
status = "primary",
title = "Navigation",
brandColor = "primary",
sidebarMenu(
sidebarHeader("Main Navigation"),
menuItem("Analytics", tabName = "analytics", icon = icon("chart-bar")),
menuItem("Data Management", tabName = "data", icon = icon("database"))
)
),
body = dashboardBody(
tabItems(
tabItem(
tabName = "analytics",
fluidRow(
# Modern card components
bs4Card(
title = "Interactive Chart",
status = "primary",
solidHeader = TRUE,
collapsible = TRUE,
plotOutput("modern_plot"),
footer = "Last updated: Today"
)
)
)
)
),
controlbar = dashboardControlbar(
skin = "light",
title = "Settings",
sliderInput("obs", "Number of observations:", 1, 100, 50)
) )
shinyWidgets: Enhanced Input Controls
The shinyWidgets
package dramatically expands your input control options with beautiful, modern widgets that improve user experience.
Popular Widget Examples:
library(shinyWidgets)
<- fluidPage(
ui title = "Enhanced Input Controls",
fluidRow(
column(4,
# Beautiful switch input
materialSwitch(
inputId = "enable_feature",
label = "Enable Advanced Features",
status = "primary",
right = TRUE
),
# Multi-select with search
pickerInput(
inputId = "countries",
label = "Select Countries:",
choices = c("USA", "Canada", "UK", "Germany", "France", "Japan"),
options = list(
`actions-box` = TRUE,
`live-search` = TRUE,
`selected-text-format` = "count > 3"
),multiple = TRUE
),
# Animated progress bar
progressBar(
id = "analysis_progress",
value = 0,
status = "info",
display_pct = TRUE,
striped = TRUE,
animated = TRUE
)
),
column(4,
# Color picker
colourInput(
inputId = "chart_color",
label = "Choose Chart Color:",
value = "#3498db",
showColour = "background"
),
# Knob input for precise values
knobInput(
inputId = "sensitivity",
label = "Sensitivity Level:",
value = 50,
min = 0,
max = 100,
displayPrevious = TRUE,
fgColor = "#428bca",
inputColor = "#428bca"
),
# Search input with suggestions
searchInput(
inputId = "search_term",
label = "Search Products:",
placeholder = "Type to search...",
btnSearch = icon("search"),
btnReset = icon("remove"),
width = "100%"
)
),
column(4,
# Dropdown with custom styling
dropdown(
$h4("Advanced Options"),
tagscheckboxGroupInput("features", "Features:",
choices = c("Export Data", "Real-time Updates", "Notifications")),
actionButton("apply", "Apply Settings", class = "btn-primary"),
style = "unite", icon = icon("gear"),
status = "danger", width = "300px",
tooltip = tooltipOptions(title = "Click to see advanced options")
),
# Air date picker for date ranges
airDatepickerInput(
inputId = "date_range",
label = "Select Date Range:",
range = TRUE,
multiple = FALSE,
clearButton = TRUE,
todayButton = TRUE,
autoClose = TRUE
)
)
)
)
<- function(input, output, session) {
server # Update progress bar based on analysis
observeEvent(input$enable_feature, {
if (input$enable_feature) {
updateProgressBar(
session = session,
id = "analysis_progress",
value = 75,
status = "success"
)
}
}) }
Advanced Data Visualization Packages
plotly: Interactive Charts and Graphs
The plotly
package transforms static ggplot2 visualizations into interactive charts with zoom, hover, and selection capabilities.
Interactive Visualization Examples:
library(plotly)
library(ggplot2)
library(dplyr)
<- fluidPage(
ui titlePanel("Interactive Data Visualization"),
sidebarLayout(
sidebarPanel(
selectInput("chart_type", "Chart Type:",
choices = c("Scatter Plot" = "scatter",
"Line Chart" = "line",
"3D Surface" = "surface")),
conditionalPanel(
condition = "input.chart_type == 'scatter'",
selectInput("color_var", "Color by:",
choices = c("Species" = "Species", "None" = "none"))
)
),
mainPanel(
plotlyOutput("interactive_plot", height = "600px")
)
)
)
<- function(input, output, session) {
server
$interactive_plot <- renderPlotly({
output
if (input$chart_type == "scatter") {
<- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
p geom_point(aes(color = if(input$color_var != "none") Species else NULL),
size = 3, alpha = 0.7) +
theme_minimal() +
labs(title = "Interactive Iris Dataset",
subtitle = "Hover for details, zoom and pan")
ggplotly(p, tooltip = c("x", "y", "colour")) %>%
layout(dragmode = "zoom")
else if (input$chart_type == "line") {
} # Time series example
<- seq.Date(from = as.Date("2023-01-01"),
dates to = as.Date("2023-12-31"), by = "day")
<- cumsum(rnorm(length(dates), 0.1, 1))
values
plot_ly(x = ~dates, y = ~values, type = "scatter", mode = "lines",
line = list(color = "#3498db", width = 3)) %>%
layout(title = "Interactive Time Series",
xaxis = list(title = "Date"),
yaxis = list(title = "Value"),
hovermode = "x unified")
else if (input$chart_type == "surface") {
} # 3D surface plot
<- seq(-2, 2, length.out = 50)
x <- seq(-2, 2, length.out = 50)
y <- outer(x, y, function(x, y) sin(sqrt(x^2 + y^2)))
z
plot_ly(x = ~x, y = ~y, z = ~z, type = "surface",
colorscale = "Viridis") %>%
layout(title = "3D Interactive Surface",
scene = list(camera = list(eye = list(x = 1.25, y = 1.25, z = 1.25))))
}
}) }
leaflet: Interactive Maps
For location-based data, leaflet
provides professional interactive maps with markers, polygons, and custom styling.
Interactive Map Implementation:
library(leaflet)
<- fluidPage(
ui titlePanel("Interactive Map Dashboard"),
fluidRow(
column(3,
wellPanel(
checkboxGroupInput("map_layers", "Map Layers:",
choices = c("Markers" = "markers",
"Heat Map" = "heatmap",
"Clusters" = "clusters"),
selected = "markers"),
sliderInput("map_zoom", "Zoom Level:",
min = 1, max = 18, value = 10)
)
),
column(9,
leafletOutput("map", height = "600px")
)
)
)
<- function(input, output, session) {
server
# Sample location data
<- data.frame(
locations lat = c(40.7128, 34.0522, 41.8781, 29.7604),
lng = c(-74.0060, -118.2437, -87.6298, -95.3698),
city = c("New York", "Los Angeles", "Chicago", "Houston"),
population = c(8.4, 3.9, 2.7, 2.3),
stringsAsFactors = FALSE
)
$map <- renderLeaflet({
outputleaflet() %>%
addTiles() %>%
setView(lng = -98.5795, lat = 39.8283, zoom = input$map_zoom)
})
observe({
leafletProxy("map") %>%
clearMarkers() %>%
clearMarkerClusters()
if ("markers" %in% input$map_layers) {
leafletProxy("map") %>%
addMarkers(
data = locations,
lng = ~lng, lat = ~lat,
popup = ~paste("<strong>", city, "</strong><br>",
"Population:", population, "million"),
icon = makeIcon(
iconUrl = "https://cdn.jsdelivr.net/gh/pointhi/leaflet-color-markers@master/img/marker-icon-blue.png",
iconWidth = 25, iconHeight = 41
)
)
}
if ("clusters" %in% input$map_layers) {
leafletProxy("map") %>%
addMarkers(
data = locations,
lng = ~lng, lat = ~lat,
clusterOptions = markerClusterOptions()
)
}
}) }
visNetwork: Network Visualizations
For relationship and network data, visNetwork
creates interactive network diagrams with physics simulations and custom styling.
library(visNetwork)
# Create network data
<- data.frame(
nodes id = 1:6,
label = c("Server", "Database", "API", "Frontend", "Cache", "Monitor"),
group = c("infrastructure", "data", "service", "ui", "performance", "ops"),
value = c(30, 25, 20, 15, 10, 5)
)
<- data.frame(
edges from = c(1, 1, 2, 3, 3, 4, 5),
to = c(2, 3, 3, 4, 5, 6, 6),
label = c("reads", "serves", "queries", "renders", "caches", "monitors", "tracks"),
arrows = "to"
)
<- fluidPage(
ui titlePanel("System Architecture Network"),
visNetworkOutput("network", height = "600px")
)
<- function(input, output, session) {
server $network <- renderVisNetwork({
outputvisNetwork(nodes, edges) %>%
visGroups(groupname = "infrastructure", color = "#FF6B6B") %>%
visGroups(groupname = "data", color = "#4ECDC4") %>%
visGroups(groupname = "service", color = "#45B7D1") %>%
visGroups(groupname = "ui", color = "#96CEB4") %>%
visGroups(groupname = "performance", color = "#FFEAA7") %>%
visGroups(groupname = "ops", color = "#DDA0DD") %>%
visOptions(highlightNearest = TRUE,
selectedBy = "group") %>%
visPhysics(stabilization = FALSE)
}) }
Data Handling and Interaction Packages
DT: Interactive Data Tables
The DT
package transforms static data frames into feature-rich, interactive tables with sorting, filtering, and editing capabilities.
Professional Data Table Implementation:
library(DT)
<- fluidPage(
ui titlePanel("Advanced Data Table Interface"),
fluidRow(
column(12,
DTOutput("advanced_table")
)
),
fluidRow(
column(6,
h4("Selected Rows:"),
verbatimTextOutput("selected_info")
),column(6,
actionButton("export_selected", "Export Selected", class = "btn-primary"),
br(), br(),
downloadButton("download_filtered", "Download Filtered Data")
)
)
)
<- function(input, output, session) {
server
# Enhanced dataset
<- mtcars %>%
enhanced_mtcars ::rownames_to_column("model") %>%
tibblemutate(
efficiency = case_when(
> 25 ~ "High",
mpg > 20 ~ "Medium",
mpg TRUE ~ "Low"
),price_estimate = round(runif(n(), 15000, 80000), 0)
)
$advanced_table <- renderDT({
outputdatatable(
enhanced_mtcars,extensions = c('Buttons', 'ColReorder', 'FixedColumns'),
options = list(
dom = 'Bfrtip',
buttons = list(
'copy', 'csv', 'excel', 'pdf',
list(extend = 'colvis', text = 'Show/Hide Columns')
),colReorder = TRUE,
fixedColumns = list(leftColumns = 1),
scrollX = TRUE,
pageLength = 15,
lengthMenu = c(5, 10, 15, 25, 50),
initComplete = JS(
"function(settings, json) {",
"$(this.api().table().header()).css({'background-color': '#3498db', 'color': '#ffffff'});",
"}"
)
),selection = list(mode = 'multiple', selected = c(1, 3, 5)),
filter = 'top',
class = 'cell-border stripe hover'
%>%
) formatCurrency('price_estimate', currency = "$", digits = 0) %>%
formatRound(c('mpg', 'disp', 'hp'), digits = 1) %>%
formatStyle(
'efficiency',
backgroundColor = styleEqual(
c('High', 'Medium', 'Low'),
c('#27AE60', '#F39C12', '#E74C3C')
),color = 'white',
fontWeight = 'bold'
%>%
) formatStyle(
'mpg',
background = styleColorBar(enhanced_mtcars$mpg, '#ECF0F1'),
backgroundSize = '100% 90%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'center'
)
})
$selected_info <- renderPrint({
outputif (length(input$advanced_table_rows_selected) > 0) {
$advanced_table_rows_selected, c("model", "mpg", "efficiency")]
enhanced_mtcars[inputelse {
} "No rows selected"
}
})
$download_filtered <- downloadHandler(
outputfilename = function() {
paste("filtered_data_", Sys.Date(), ".csv", sep = "")
},content = function(file) {
# Get filtered data based on current table state
<- enhanced_mtcars[input$advanced_table_rows_all, ]
filtered_data write.csv(filtered_data, file, row.names = FALSE)
}
) }
shinyFiles: File System Integration
For applications requiring file system access, shinyFiles
provides secure file browsing and selection capabilities.
library(shinyFiles)
<- fluidPage(
ui titlePanel("File Management Interface"),
fluidRow(
column(6,
h4("File Selection"),
shinyFilesButton("file_select", "Choose File",
"Please select a file", multiple = FALSE,
buttonType = "default", class = "btn-primary"),
br(), br(),
verbatimTextOutput("selected_file")
),
column(6,
h4("Directory Browser"),
shinyDirButton("dir_select", "Choose Directory",
"Please select a directory",
buttonType = "default", class = "btn-success"),
br(), br(),
verbatimTextOutput("selected_dir")
)
),
conditionalPanel(
condition = "output.file_available",
fluidRow(
column(12,
h4("File Preview"),
DTOutput("file_preview")
)
)
)
)
<- function(input, output, session) {
server
# Set up file system roots (secure access)
<- c(Home = fs::path_home(),
volumes Projects = "~/Projects",
Data = "~/Data")
shinyFileChoose(input, "file_select", roots = volumes,
filetypes = c('csv', 'xlsx', 'txt', 'rds'))
shinyDirChoose(input, "dir_select", roots = volumes)
<- reactive({
selected_file_path if (!is.null(input$file_select)) {
<- parseFilePaths(volumes, input$file_select)
file_info if (nrow(file_info) > 0) {
return(as.character(file_info$datapath))
}
}return(NULL)
})
$selected_file <- renderText({
output<- selected_file_path()
path if (!is.null(path)) {
paste("Selected file:", basename(path))
else {
} "No file selected"
}
})
$selected_dir <- renderText({
outputif (!is.null(input$dir_select)) {
<- parseDirPath(volumes, input$dir_select)
dir_info if (length(dir_info) > 0) {
paste("Selected directory:", as.character(dir_info))
else {
} "No directory selected"
}else {
} "No directory selected"
}
})
$file_available <- reactive({
output!is.null(selected_file_path())
})outputOptions(output, "file_available", suspendWhenHidden = FALSE)
$file_preview <- renderDT({
output<- selected_file_path()
path if (!is.null(path) && file.exists(path)) {
tryCatch({
if (tools::file_ext(path) == "csv") {
<- read.csv(path, nrows = 100) # Preview first 100 rows
data else if (tools::file_ext(path) == "xlsx") {
} <- readxl::read_excel(path, n_max = 100)
data else {
} return(NULL)
}
datatable(data, options = list(scrollX = TRUE, pageLength = 10))
error = function(e) {
}, return(data.frame(Error = paste("Cannot preview file:", e$message)))
})
}
}) }
Authentication and Security Packages
shinymanager: User Authentication
The shinymanager
package provides a complete authentication system with user management, password handling, and access control.
library(shinymanager)
# Define credentials
<- data.frame(
credentials user = c("admin", "analyst", "viewer"),
password = c("secret123", "data456", "read789"),
role = c("administrator", "analyst", "viewer"),
stringsAsFactors = FALSE
)
# Secure the UI
<- secure_app(
ui fluidPage(
titlePanel("Secure Application"),
# Content only visible to authenticated users
conditionalPanel(
condition = "output.authenticated",
fluidRow(
column(12,
h3("Welcome to the secure area!"),
verbatimTextOutput("user_info"),
# Role-based content
conditionalPanel(
condition = "output.is_admin",
wellPanel(
h4("Administrator Panel"),
p("Only administrators can see this content."),
actionButton("admin_action", "Admin Function", class = "btn-danger")
)
),
conditionalPanel(
condition = "output.is_analyst",
wellPanel(
h4("Analyst Tools"),
p("Analysis tools and data access."),
plotOutput("analyst_plot")
)
)
)
)
)
),
# Custom authentication UI
tags_top = tags$div(
$h4("Demo Application", style = "align: center;"),
tags$p("Please log in to access the application.")
tags
)
)
<- function(input, output, session) {
server
# Authentication
<- secure_server(
res_auth check_credentials = check_credentials(credentials)
)
$authenticated <- reactive({
output$user_auth
res_auth
})outputOptions(output, "authenticated", suspendWhenHidden = FALSE)
# User information
$user_info <- renderText({
outputif (res_auth$user_auth) {
paste("Logged in as:", res_auth$user_info$user,
"| Role:", res_auth$user_info$role)
}
})
# Role-based access
$is_admin <- reactive({
output$user_auth && res_auth$user_info$role == "administrator"
res_auth
})outputOptions(output, "is_admin", suspendWhenHidden = FALSE)
$is_analyst <- reactive({
output$user_auth && res_auth$user_info$role %in% c("administrator", "analyst")
res_auth
})outputOptions(output, "is_analyst", suspendWhenHidden = FALSE)
# Role-specific content
$analyst_plot <- renderPlot({
outputif (res_auth$user_auth && res_auth$user_info$role %in% c("administrator", "analyst")) {
plot(cars, main = "Analyst Data Visualization")
}
})
}
shinyApp(ui, server)
Development and Productivity Packages
golem: Production-Ready App Framework
The golem
package provides a structured framework for building production-ready Shiny applications with best practices built-in.
Golem Project Structure:
library(golem)
# Initialize a new golem project
# golem::create_golem("myapp")
# Example of golem-structured application
<- function(request) {
ui tagList(
# Application UI logic
fluidPage(
h1("Production Shiny App"),
mod_data_analysis_ui("analysis_1")
)
)
}
<- function(input, output, session) {
server # Module servers
mod_data_analysis_server("analysis_1")
}
# Run the application with golem
<- function(...) {
run_app with_golem_options(
app = shinyApp(
ui = app_ui,
server = app_server
),golem_opts = list(...)
) }
shinytest2: Automated Testing
For robust applications, shinytest2
provides comprehensive testing capabilities to ensure your app works correctly across updates.
library(shinytest2)
# Example test file: tests/testthat/test-app.R
test_that("Main application functionality", {
<- AppDriver$new(app_dir = "../../")
app
# Test initial state
$expect_values()
app
# Test input interactions
$set_inputs(dataset = "mtcars")
app$set_inputs(x_var = "mpg")
app$set_inputs(y_var = "hp")
app
# Verify output updates
$expect_values(output = "plot")
app
# Test file download
$click("download_data")
app# Verify download works
$expect_download("download_data")
app
# Test error handling
$set_inputs(dataset = "invalid_dataset")
app$expect_text("#error_message", "Invalid dataset selected")
app
# Clean up
$stop()
app
})
# Performance testing
test_that("Application performance", {
<- AppDriver$new(app_dir = "../../")
app
# Test with large dataset
<- Sys.time()
start_time $set_inputs(dataset = "large_dataset")
app$wait_for_idle(timeout = 30000) # 30 second timeout
app<- Sys.time()
end_time
expect_lt(as.numeric(end_time - start_time), 10) # Should complete in under 10 seconds
$stop()
app })
reactlog: Reactive Debugging
The reactlog
package provides visual debugging tools to understand complex reactive relationships in your applications.
# Enable reactive logging
options(shiny.reactlog = TRUE)
# In your application
<- function(input, output, session) {
server
# Complex reactive chain for debugging
<- reactive({
data_source # Expensive data loading
Sys.sleep(0.1) # Simulate processing time
mtcarslabel = "data_source") # Label for easier debugging
},
<- reactive({
filtered_data req(input$filter_var, input$filter_value)
data_source() %>%
filter(.data[[input$filter_var]] == input$filter_value)
label = "filtered_data")
},
<- reactive({
summary_stats <- filtered_data()
data list(
rows = nrow(data),
mean_mpg = mean(data$mpg),
max_hp = max(data$hp)
)label = "summary_stats")
},
$plot <- renderPlot({
outputggplot(filtered_data(), aes(x = mpg, y = hp)) +
geom_point() +
theme_minimal()
label = "main_plot")
},
$summary <- renderText({
output<- summary_stats()
stats paste("Rows:", stats$rows, "| Avg MPG:", round(stats$mean_mpg, 1))
label = "summary_display")
},
}
# After running your app, view the reactive log
# reactlog::reactlogShow()
Specialized Extension Packages
shinycssloaders: Loading Indicators
Improve user experience with elegant loading indicators during computation-intensive operations.
library(shinycssloaders)
<- fluidPage(
ui titlePanel("Loading Indicators Demo"),
fluidRow(
column(6,
h4("Spinner Types"),
actionButton("trigger1", "Generate Plot 1", class = "btn-primary"),
br(), br(),
withSpinner(plotOutput("plot1"), type = 1, color = "#3498db"),
br(),
actionButton("trigger2", "Generate Plot 2", class = "btn-success"),
br(), br(),
withSpinner(plotOutput("plot2"), type = 4, color = "#e74c3c")
),
column(6,
h4("Custom Loading Messages"),
actionButton("trigger3", "Analyze Data", class = "btn-warning"),
br(), br(),
withSpinner(
verbatimTextOutput("analysis"),
type = 6,
color = "#9b59b6",
proxy.height = "200px"
),
br(),
actionButton("trigger4", "Generate Table", class = "btn-info"),
br(), br(),
withSpinner(DTOutput("data_table"), type = 8)
)
)
)
<- function(input, output, session) {
server
$plot1 <- renderPlot({
output$trigger1
inputisolate({
if (input$trigger1 > 0) {
Sys.sleep(2) # Simulate computation
plot(cars, main = "Scatter Plot with Spinner Type 1")
}
})
})
$plot2 <- renderPlot({
output$trigger2
inputisolate({
if (input$trigger2 > 0) {
Sys.sleep(3) # Simulate longer computation
hist(rnorm(1000), main = "Histogram with Spinner Type 4", col = "skyblue")
}
})
})
$analysis <- renderText({
output$trigger3
inputisolate({
if (input$trigger3 > 0) {
Sys.sleep(4) # Simulate complex analysis
paste("Analysis complete at", Sys.time(),
"\nProcessed 10,000 records\nFound 23 significant patterns")
}
})
})
$data_table <- renderDT({
output$trigger4
inputisolate({
if (input$trigger4 > 0) {
Sys.sleep(2)
datatable(mtcars, options = list(pageLength = 10))
}
})
}) }
shinyvalidate: Input Validation
Implement comprehensive input validation to ensure data quality and user guidance.
library(shinyvalidate)
<- fluidPage(
ui titlePanel("Input Validation Demo"),
fluidRow(
column(6,
wellPanel(
h4("User Registration Form"),
textInput("username", "Username:",
placeholder = "Enter username (3-20 characters)"),
textInput("email", "Email:",
placeholder = "your.email@domain.com"),
passwordInput("password", "Password:",
placeholder = "Min 8 characters, 1 number, 1 special char"),
passwordInput("confirm_password", "Confirm Password:"),
numericInput("age", "Age:", value = NULL, min = 18, max = 120),
textInput("phone", "Phone Number:",
placeholder = "+1-555-123-4567"),
actionButton("submit", "Submit Registration",
class = "btn-primary", disabled = TRUE)
)
),
column(6,
h4("Validation Status"),
verbatimTextOutput("validation_summary"),
br(),
h4("Form Data Preview"),
verbatimTextOutput("form_data")
)
)
)
<- function(input, output, session) {
server
# Initialize validation
<- InputValidator$new()
iv
# Username validation
$add_rule("username", sv_required())
iv$add_rule("username", sv_between(3, 20, message_fmt = "Username must be between {left} and {right} characters"))
iv$add_rule("username", ~ if (!grepl("^[a-zA-Z0-9_]+$", .)) "Username can only contain letters, numbers, and underscores")
iv
# Email validation
$add_rule("email", sv_required())
iv$add_rule("email", sv_email())
iv
# Password validation
$add_rule("password", sv_required())
iv$add_rule("password", sv_gte(8, message_fmt = "Password must be at least {rhs} characters"))
iv$add_rule("password", ~ if (!grepl("(?=.*[0-9])", ., perl = TRUE)) "Password must contain at least one number")
iv$add_rule("password", ~ if (!grepl("(?=.*[!@#$%^&*])", ., perl = TRUE)) "Password must contain at least one special character (!@#$%^&*)")
iv
# Confirm password validation
$add_rule("confirm_password", sv_required())
iv$add_rule("confirm_password", ~ if (. != input$password) "Passwords do not match")
iv
# Age validation
$add_rule("age", sv_required())
iv$add_rule("age", sv_between(18, 120, inclusive = c(TRUE, TRUE)))
iv
# Phone validation
$add_rule("phone", sv_required())
iv$add_rule("phone", ~ if (!grepl("^\\+?[1-9]\\d{1,14}$", gsub("[^0-9+]", "", .))) "Please enter a valid phone number")
iv
# Enable validation
$enable()
iv
# Update submit button based on validation
observe({
::toggleState("submit", iv$is_valid())
shinyjs
})
$validation_summary <- renderText({
outputif (iv$is_valid()) {
"✅ All fields are valid! Ready to submit."
else {
} <- iv$validate()
errors if (length(errors) > 0) {
paste("❌ Validation errors:\n", paste(errors, collapse = "\n"))
else {
} "📝 Please fill out the form..."
}
}
})
$form_data <- renderText({
outputif (iv$is_valid()) {
paste(
"Username:", input$username,
"\nEmail:", input$email,
"\nAge:", input$age,
"\nPhone:", input$phone,
"\nPassword: [HIDDEN]"
)else {
} "Form data will appear when all validations pass."
}
})
observeEvent(input$submit, {
if (iv$is_valid()) {
showModal(modalDialog(
title = "Registration Successful!",
"User account has been created successfully.",
easyClose = TRUE,
footer = modalButton("Close")
))
}
}) }
fresh: Custom Themes and Styling
Create completely custom themes and modern designs with the fresh
package.
library(fresh)
# Create custom theme
<- create_theme(
my_theme adminlte_color(
light_blue = "#3498db",
red = "#e74c3c",
green = "#27ae60",
aqua = "#1abc9c",
yellow = "#f1c40f",
blue = "#2980b9",
navy = "#2c3e50",
teal = "#16a085",
olive = "#7f8c8d",
lime = "#2ecc71",
orange = "#e67e22",
fuchsia = "#9b59b6"
),adminlte_sidebar(
dark_bg = "#2c3e50",
dark_hover_bg = "#34495e",
dark_color = "#ecf0f1"
),adminlte_global(
content_bg = "#f8f9fa",
box_bg = "#ffffff",
info_box_bg = "#ffffff"
)
)
<- dashboardPage(
ui dashboardHeader(title = "Custom Themed Dashboard"),
dashboardSidebar(
sidebarMenu(
menuItem("Dashboard", tabName = "dashboard", icon = icon("dashboard")),
menuItem("Analytics", tabName = "analytics", icon = icon("chart-bar"))
)
),
dashboardBody(
use_theme(my_theme), # Apply custom theme
tabItems(
tabItem(tabName = "dashboard",
fluidRow(
box(
title = "Custom Styled Box", status = "primary", solidHeader = TRUE,
"This box uses the custom theme colors and styling.",
width = 12
)
)
)
)
) )
Package Selection Guidelines
Choosing the Right Packages
For Business Dashboards:
- Essential:
shinydashboard
orbs4Dash
for layout - Data:
DT
for tables,plotly
for charts - Polish:
shinycssloaders
,shinyWidgets
For Data Analysis Applications:
- Core:
plotly
,leaflet
(for maps),visNetwork
(for networks) - Interaction:
DT
,shinyFiles
- Validation:
shinyvalidate
For Production Applications:
- Framework:
golem
for structure - Testing:
shinytest2
for reliability - Security:
shinymanager
for authentication - Monitoring:
reactlog
for debugging
Performance Considerations
# Package loading optimization
library(shiny)
# Load packages conditionally based on features used
if ("advanced_charts" %in% enabled_features) {
library(plotly)
library(visNetwork)
}
if ("data_tables" %in% enabled_features) {
library(DT)
}
# Lazy loading for heavy packages
<- function() {
load_heavy_packages if (!requireNamespace("leaflet", quietly = TRUE)) {
install.packages("leaflet")
}library(leaflet)
}
# Load only when needed
observeEvent(input$show_map, {
load_heavy_packages()
$map <- renderLeaflet({
outputleaflet() %>% addTiles()
})once = TRUE) },
Common Questions About Shiny Packages and Extensions
The choice depends on your design requirements and target audience:
Choose shinydashboard when:
- Building traditional business dashboards or admin interfaces
- Need stable, well-documented components with extensive community support
- Working with conservative organizations that prefer proven solutions
- Require maximum compatibility with other Shiny packages
Choose bs4Dash when:
- Need modern, responsive design with Bootstrap 4 features
- Want advanced UI components like cards, ribbons, and enhanced controls
- Building customer-facing applications where design matters
- Need dark theme support and contemporary aesthetics
Implementation comparison:
# shinydashboard approach
<- dashboardPage(
ui dashboardHeader(title = "Traditional Dashboard"),
dashboardSidebar(...),
dashboardBody(...)
)
# bs4Dash approach
<- dashboardPage(
ui dark = TRUE, # Modern dark theme
header = dashboardHeader(
title = dashboardBrand(
title = "Modern Dashboard",
color = "primary",
href = "https://example.com"
)
),sidebar = dashboardSidebar(skin = "light", ...),
body = dashboardBody(...),
controlbar = dashboardControlbar(...) # Additional control panel
)
Both are actively maintained, but bs4Dash offers more modern features at the cost of some complexity.
The decision depends on your interactivity requirements and performance considerations:
Use plotly when:
- Users need to explore data through zoom, pan, and hover interactions
- Building dashboards where stakeholders will investigate patterns
- Want professional tooltips and cross-filtering capabilities
- Need to export interactive visualizations
Use base R plots when:
- Creating simple, static visualizations for reports
- Working with very large datasets where interactivity causes performance issues
- Need complete control over plot appearance and behavior
- Building applications with minimal package dependencies
Performance comparison:
# Base R - faster for large datasets
$static_plot <- renderPlot({
outputplot(large_dataset$x, large_dataset$y,
main = "Static Plot - Fast Rendering")
})
# Plotly - better for exploration
$interactive_plot <- renderPlotly({
output<- ggplot(moderate_dataset, aes(x = x, y = y)) +
p geom_point() +
theme_minimal()
ggplotly(p) %>%
layout(hovermode = "closest")
})
# Hybrid approach - plotly for small datasets, base R for large
$adaptive_plot <- renderUI({
outputif (nrow(current_data()) < 1000) {
plotlyOutput("interactive_version")
else {
} plotOutput("static_version")
} })
Consider using plotly for datasets under 10,000 points and base R for larger datasets unless interactivity is essential.
Effective dependency management is crucial for reliable deployments:
Use renv for reproducible environments:
# Initialize renv in your project
::init()
renv
# Install packages as needed
install.packages(c("shinydashboard", "DT", "plotly"))
# Record current state
::snapshot()
renv
# Restore environment on different machines
::restore() renv
Minimize dependencies strategically:
# Instead of loading heavy packages globally
# library(plotly) # ~50MB package
# Load conditionally
<- reactive({
use_plotly $enable_interactive_charts
input
})
$chart <- renderUI({
outputif (use_plotly()) {
if (!requireNamespace("plotly", quietly = TRUE)) {
return(p("Interactive charts require plotly package"))
}library(plotly)
plotlyOutput("interactive_chart")
else {
} plotOutput("static_chart")
} })
Check package health before deployment:
# Verify all packages load correctly
<- c("shiny", "shinydashboard", "DT", "plotly")
required_packages
<- function(packages) {
check_packages <- packages[!sapply(packages, requireNamespace, quietly = TRUE)]
missing if (length(missing) > 0) {
stop("Missing packages: ", paste(missing, collapse = ", "))
}message("All required packages available")
}
check_packages(required_packages)
For large applications, consider package namespaces:
# Instead of library(dplyr)
# Use explicit namespacing to avoid conflicts
<- dplyr::filter(data, condition == value)
filtered_data <- dplyr::summarise(grouped_data, mean = mean(value)) summary_stats
This approach prevents package conflicts and makes dependencies explicit.
Combining packages requires careful consideration of conflicts and styling consistency:
Establish a package hierarchy:
# Primary framework (choose one)
library(shinydashboard) # OR bs4Dash, but not both
# Enhancement packages (compatible with primary)
library(shinyWidgets) # Enhanced inputs
library(shinycssloaders) # Loading indicators
library(shinyvalidate) # Input validation
# Visualization packages
library(DT) # Data tables
library(plotly) # Interactive plots
Test package combinations:
# Create a test app to verify compatibility
<- fluidPage(
test_ui titlePanel("Package Compatibility Test"),
# Test shinyWidgets components
pickerInput("test_picker", "Test Picker", choices = 1:5),
# Test DT integration
DTOutput("test_table"),
# Test plotly integration
plotlyOutput("test_plot"),
# Test loading indicators
withSpinner(verbatimTextOutput("test_output"))
)
<- function(input, output, session) {
test_server $test_table <- renderDT({
outputdatatable(mtcars[1:10, ])
})
$test_plot <- renderPlotly({
output<- ggplot(mtcars, aes(mpg, hp)) + geom_point()
p ggplotly(p)
})
$test_output <- renderText({
outputSys.sleep(2) # Test spinner
"All packages working correctly!"
}) }
Handle styling conflicts:
# Use fresh package to create consistent themes
library(fresh)
<- create_theme(
unified_theme adminlte_color(
primary = "#3498db",
success = "#27ae60",
warning = "#f1c40f"
),# Ensure shinyWidgets uses same colors
bs_vars_button(
default_bg = "#3498db",
primary_bg = "#3498db"
)
)
# Apply theme globally
<- dashboardPage(
ui dashboardHeader(...),
dashboardSidebar(...),
dashboardBody(
use_theme(unified_theme),
# Your content here
) )
Always test the complete package combination before deploying to production.
Test Your Understanding
You’re building a data exploration dashboard for a financial services company. The application needs interactive charts, secure user authentication, professional appearance, and the ability to handle large datasets efficiently. Which package combination would be most appropriate?
shiny
+ggplot2
+shinyFiles
+fresh
shinydashboard
+plotly
+shinymanager
+DT
bs4Dash
+leaflet
+shinyvalidate
+visNetwork
shinyWidgets
+shinycssloaders
+shinytest2
+golem
- Consider the specific requirements: finance industry needs, interactivity, security, and performance
- Think about which packages address the core functional requirements vs. nice-to-have features
- Consider what type of interface would be most appropriate for a financial services context
B) shinydashboard
+ plotly
+ shinymanager
+ DT
This combination best addresses all the specified requirements:
Why this works best:
shinydashboard
: Provides professional, business-appropriate interface that financial services users expectplotly
: Delivers interactive charts essential for data exploration with zoom, hover, and drill-down capabilitiesshinymanager
: Implements secure user authentication crucial for financial data access controlDT
: Handles large datasets efficiently with pagination, search, and export features
Addressing each requirement:
library(shinydashboard) # Professional appearance
library(plotly) # Interactive charts
library(shinymanager) # Secure authentication
library(DT) # Efficient large dataset handling
# Example implementation
<- secure_app(
ui dashboardPage(
dashboardHeader(title = "Financial Analytics Dashboard"),
dashboardSidebar(...),
dashboardBody(
fluidRow(
box(plotlyOutput("interactive_chart")), # Interactive visualization
box(DTOutput("large_dataset_table")) # Efficient data display
)
)
)
)
<- function(input, output, session) {
server <- secure_server(check_credentials = credentials) # Authentication
res_auth
$interactive_chart <- renderPlotly({
output# Financial charts with interactivity
})
$large_dataset_table <- renderDT({
output# Efficiently display large financial datasets
}) }
Why other options are less suitable:
- A) Lacks authentication and interactive charting capabilities
- C)
leaflet
andvisNetwork
don’t address core financial dashboard needs - D) Focuses on development tools rather than user-facing functionality
Your Shiny application becomes slow when users upload large CSV files (100MB+) for analysis. The app currently uses plotly
for all visualizations and DT
for data tables. Users report 30-60 second loading times. What’s the most effective optimization strategy?
- Switch from
plotly
to base R plots for all visualizations
- Implement conditional loading: use
plotly
for small datasets (<10K rows) and base R for larger ones
- Add
shinycssloaders
to show loading indicators and keep current implementation
- Use
shinyFiles
to prevent large file uploads entirely
- Consider the balance between user experience and performance
- Think about what causes the performance issues specifically
- Consider solutions that maintain functionality while improving performance
B) Implement conditional loading: use plotly
for small datasets (<10K rows) and base R for larger ones
This provides the optimal balance between interactivity and performance:
Why conditional loading works best:
- Maintains interactivity for datasets where it’s most valuable (smaller, exploratory data)
- Prevents performance issues with large datasets by using efficient base R plotting
- Preserves user experience by choosing the right tool for the data size
- Scalable solution that adapts to different use cases
Implementation example:
<- function(input, output, session) {
server
<- reactive({
uploaded_data req(input$file)
# Show progress for large files
withProgress(message = "Loading data...", {
<- read.csv(input$file$datapath)
data setProgress(1, detail = paste("Loaded", nrow(data), "rows"))
data
})
})
# Adaptive visualization based on data size
$chart <- renderUI({
output<- uploaded_data()
data
if (nrow(data) <= 10000) {
# Use plotly for smaller datasets
plotlyOutput("interactive_chart")
else {
} # Use base R for large datasets
div(
h4("Large Dataset - Static Visualization"),
p(paste("Dataset too large for interactivity:", nrow(data), "rows")),
plotOutput("static_chart", height = "400px")
)
}
})
$interactive_chart <- renderPlotly({
output<- uploaded_data()
data req(nrow(data) <= 10000)
<- ggplot(data[1:min(5000, nrow(data)), ], aes(x = x, y = y)) +
p geom_point(alpha = 0.6) +
theme_minimal()
ggplotly(p)
})
$static_chart <- renderPlot({
output<- uploaded_data()
data req(nrow(data) > 10000)
# Sample large datasets for visualization
<- data[sample(nrow(data), min(10000, nrow(data))), ]
sample_data plot(sample_data$x, sample_data$y,
main = paste("Sample of", nrow(data), "total rows"),
pch = ".", col = alpha("blue", 0.6))
})
# Always use DT with server-side processing for large data
$data_table <- renderDT({
outputdatatable(
uploaded_data(),
options = list(
server = nrow(uploaded_data()) > 1000, # Server-side for large data
pageLength = 25,
scrollX = TRUE
)
)
}) }
Why other options are insufficient:
- A) Eliminates valuable interactivity for all datasets
- C) Loading indicators don’t solve performance issues, just mask them
- D) Prevents legitimate use cases and doesn’t address the core optimization need
You’re building a multi-tenant SaaS application where different organizations need access to their own data with role-based permissions within each organization. Users should have roles like “admin”, “analyst”, and “viewer” with different capabilities. What’s the most comprehensive authentication approach?
- Use
shinymanager
with a single credentials data frame containing all users and roles
- Implement custom authentication with database backend and session management
- Use
shinymanager
with dynamic credential loading based on organization and integrate with role-based UI controls
- Use basic HTTP authentication and manage permissions through file system access
- Consider scalability for multiple organizations with different user bases
- Think about role-based access control within organizations
- Consider maintenance and security implications
C) Use shinymanager
with dynamic credential loading based on organization and integrate with role-based UI controls
This approach provides enterprise-grade authentication while leveraging proven packages:
Why this approach works best:
- Leverages proven authentication with
shinymanager
’s security features - Supports multi-tenancy through dynamic credential loading
- Implements role-based access with granular control
- Maintainable and scalable without building custom authentication from scratch
Implementation example:
library(shinymanager)
library(DBI)
library(RSQLite)
# Database-backed credential system
<- function(organization) {
get_credentials <- dbConnect(SQLite(), "users.db")
con
<- dbGetQuery(con,
credentials "SELECT username, password, role, organization
FROM users WHERE organization = ?",
params = list(organization))
dbDisconnect(con)
return(credentials)
}
# Multi-tenant UI
<- function(request) {
ui # Extract organization from subdomain or URL parameter
<- extract_organization(request)
organization
# Load organization-specific credentials
<- get_credentials(organization)
org_credentials
secure_app(
fluidPage(
titlePanel(paste("Dashboard -", organization)),
# Role-based UI components
conditionalPanel(
condition = "output.user_role == 'admin'",
wellPanel(
h4("Administrator Panel"),
actionButton("manage_users", "Manage Users"),
actionButton("system_settings", "System Settings")
)
),
conditionalPanel(
condition = "output.user_role %in% ['admin', 'analyst']",
wellPanel(
h4("Analysis Tools"),
plotlyOutput("advanced_analytics"),
DTOutput("detailed_data")
)
),
conditionalPanel(
condition = "output.user_role %in% ['admin', 'analyst', 'viewer']",
wellPanel(
h4("Basic Reports"),
plotOutput("summary_charts"),
DTOutput("summary_table")
)
)
),
# Custom authentication message
tags_top = tags$div(
$h3(paste("Welcome to", organization)),
tags$p("Please log in to access your organization's dashboard.")
tags
)
)
}
<- function(input, output, session) {
server # Get organization context
<- extract_organization(session$request)
organization <- get_credentials(organization)
credentials
# Secure authentication
<- secure_server(
res_auth check_credentials = check_credentials(credentials)
)
# Expose user role to UI
$user_role <- reactive({
outputif (res_auth$user_auth) {
$user_info$role
res_authelse {
} NULL
}
})outputOptions(output, "user_role", suspendWhenHidden = FALSE)
# Role-based data access
<- reactive({
user_data req(res_auth$user_auth)
# Filter data based on organization and user role
load_user_data(
organization = organization,
user_role = res_auth$user_info$role,
user_id = res_auth$user_info$user
)
})
# Role-specific outputs
$advanced_analytics <- renderPlotly({
outputreq(res_auth$user_info$role %in% c("admin", "analyst"))
create_advanced_plot(user_data())
})
$summary_charts <- renderPlot({
outputreq(res_auth$user_auth) # Available to all authenticated users
create_summary_plot(user_data())
})
}
# Helper function to extract organization from request
<- function(request) {
extract_organization # Could extract from subdomain, URL parameter, or header
<- parseQueryString(request$QUERY_STRING)
query_params return(query_params$org %||% "default")
}
Key advantages: - Security: Leverages shinymanager
’s proven authentication mechanisms - Scalability: Database-backed user management supports unlimited organizations - Flexibility: Role-based access control adapts to different organizational needs - Maintainability: Uses established packages rather than custom authentication code
Why other options are less suitable: - A) Single credentials data frame doesn’t scale for multi-tenant architecture - B) Custom authentication introduces security risks and maintenance overhead - D) HTTP authentication lacks the granular control needed for role-based access
Conclusion
The rich ecosystem of Shiny packages and extensions transforms the framework from a simple web application tool into a comprehensive platform for building professional, feature-rich applications. The key to success lies not in using every available package, but in strategically selecting the right combination that addresses your specific requirements while maintaining performance and maintainability.
Professional Shiny development requires balancing functionality with simplicity—each additional package introduces dependencies and potential conflicts, but the right packages can save weeks of development time and deliver capabilities that would be difficult to build from scratch. The packages covered in this guide represent battle-tested solutions that have proven their value in production environments across diverse industries and use cases.
As the Shiny ecosystem continues to evolve, staying informed about new packages and updates to existing ones will help you make informed decisions about when to adopt new tools versus maintaining stable, proven solutions. The foundation you’ve built with these essential packages provides a solid base for exploring more specialized extensions as your applications grow in complexity and scope.
Next Steps
Based on what you’ve learned about Shiny packages and extensions, here are recommended paths for continuing your development expertise:
Immediate Next Steps (Complete These First)
- Code Organization and Structure - Learn to manage complex applications with multiple packages effectively
- Testing and Debugging Strategies - Implement testing frameworks for applications using multiple packages
- Practice Exercise: Build a sample application that integrates 3-4 packages from different categories (UI, visualization, and productivity) to understand package interaction patterns
Building on Your Package Knowledge (Choose Your Path)
For Advanced Development:
For Professional Applications:
For Production Deployment:
Long-term Goals (2-4 Weeks)
- Create a personal toolkit of preferred packages for different application types (dashboards, analytics tools, public-facing apps)
- Develop a template project structure that incorporates your most-used packages with proper dependency management
- Contribute to the Shiny package ecosystem by creating extensions or contributing to existing packages
- Build a comprehensive application that showcases multiple package integrations working together seamlessly
Explore More Articles
Here are more articles from the same category to help you dive deeper into Shiny development resources.
Reuse
Citation
@online{kassambara2025,
author = {Kassambara, Alboukadel},
title = {Essential {Shiny} {Packages} and {Extensions:} {Complete}
{Developer} {Toolkit}},
date = {2025-05-23},
url = {https://www.datanovia.com/learn/tools/shiny-apps/resources/packages-extensions.html},
langid = {en}
}