flowchart TD A[User Input Change] --> B[Reactive Expression 1] A --> C[Reactive Expression 2] B --> D[Output 1] C --> D C --> E[Output 2] D --> F[Error Appears] E --> G[Cascading Failure] style F fill:#ffcccc style G fill:#ffcccc
Key Takeaways
- Systematic Debugging Approach: Learn structured methods to identify and isolate issues in Shiny applications, saving hours of frustration
- Reactive Code Diagnostics: Master techniques to debug reactive expressions, understand dependency chains, and fix complex reactivity issues
- Performance Problem Solutions: Identify and resolve common performance bottlenecks that slow down your applications and frustrate users
- Deployment Issue Resolution: Overcome common deployment challenges and environment-specific problems that prevent successful app publishing
- Preventive Best Practices: Implement coding patterns and development workflows that catch issues early and reduce debugging time
Introduction
Every Shiny developer has been there: your application was working perfectly yesterday, but today it throws cryptic errors, displays blank outputs, or crashes unexpectedly. The frustration of debugging Shiny applications can derail productive development sessions and turn simple fixes into multi-hour investigations.
The challenge with Shiny troubleshooting lies in its reactive architecture—errors often cascade through dependent components, making it difficult to identify the root cause. Unlike traditional R scripts where errors have clear line-by-line origins, Shiny’s event-driven nature creates complex dependency webs that require specialized debugging strategies.
This comprehensive troubleshooting guide equips you with systematic approaches to diagnose and fix the most common Shiny issues. You’ll learn professional debugging techniques, master reactive code diagnostics, and develop prevention strategies that minimize future problems. Whether you’re dealing with blank outputs, deployment failures, or mysterious performance issues, this guide provides the solutions you need to get back to building great applications.
Understanding Shiny’s Error Landscape
The Reactive Debugging Challenge
Shiny’s reactive programming model creates unique debugging scenarios that traditional R developers often find confusing:
Why Shiny Errors Are Different:
- Asynchronous Execution: Errors may not appear immediately when the problematic code runs
- Dependency Chains: One failing reactive expression can break multiple outputs
- Context Loss: Error messages often lack clear stack traces pointing to the source
- Silent Failures: Some reactive expressions fail silently, causing downstream issues
Error Categories and Identification
Understanding error types helps you choose the right debugging approach:
Immediate Errors:
- Syntax errors preventing app startup
- Missing package dependencies
- Invalid function arguments
Runtime Errors:
- Reactive expression failures during execution
- Data processing errors with user inputs
- Memory or performance-related crashes
Silent Failures:
- Outputs not updating when expected
- Incorrect data transformations
- Broken reactive dependencies
Essential Debugging Tools and Techniques
Built-in Shiny Debugging Features
Enable Shiny Developer Mode:
# Enable comprehensive error reporting
options(shiny.error = browser)
options(shiny.reactlog = TRUE)
options(shiny.autoload.r = FALSE)
# For detailed reactive debugging
options(shiny.trace = TRUE)
Browser-Based Debugging:
# Insert breakpoints in server code
<- function(input, output, session) {
server
$my_plot <- renderPlot({
outputbrowser() # Execution stops here for inspection
<- process_data(input$dataset)
data create_plot(data)
}) }
Reactive Log Analysis:
# Start reactive logging
::reactlogShow()
shiny
# Run your application, then view the reactive graph
# to understand dependency relationships and execution order
Console-Based Debugging Strategies
Strategic Print Statements:
<- function(input, output, session) {
server
# Debug reactive expressions
<- reactive({
processed_data cat("Processing data for:", input$dataset, "\n")
tryCatch({
<- expensive_operation(input$dataset)
result cat("Data processing successful, rows:", nrow(result), "\n")
resulterror = function(e) {
}, cat("Error in data processing:", e$message, "\n")
return(NULL)
})
})
$summary <- renderPrint({
output<- processed_data()
data
if (is.null(data)) {
cat("No data available for summary\n")
return("Data processing failed")
}
cat("Rendering summary for", nrow(data), "rows\n")
summary(data)
}) }
Validation and Error Handling:
# Use req() for input validation
$plot <- renderPlot({
output# Ensure required inputs exist
req(input$x_var, input$y_var, input$dataset)
# Validate input values
req(input$x_var != "", input$y_var != "")
<- get_data(input$dataset)
data
# Validate data availability
req(nrow(data) > 0)
# Validate column existence
req(input$x_var %in% names(data))
req(input$y_var %in% names(data))
plot(data[[input$x_var]], data[[input$y_var]])
})
Advanced Debugging with RStudio Tools
Profiling Performance Issues:
# Profile your Shiny app to identify bottlenecks
library(profvis)
profvis({
# Run your computationally expensive reactive expressions
<- process_large_dataset()
data complex_analysis(data)
})
Memory Usage Monitoring:
# Monitor memory usage in reactive expressions
<- function(input, output, session) {
server
$memory_usage <- renderText({
outputpaste("Memory usage:", format(object.size(ls()), units = "MB"))
})
# Check memory before expensive operations
<- reactive({
large_data cat("Memory before operation:", gc()[2,2], "MB\n")
<- read_large_file(input$file_path)
result cat("Memory after operation:", gc()[2,2], "MB\n")
result
}) }
Common Issues and Solutions
Issue 1: Outputs Not Updating
Problem: Your outputs remain blank or don’t update when inputs change, even though no errors appear in the console.
Diagnosis Steps:
# Check if reactive expressions are executing
<- function(input, output, session) {
server
<- reactive({
my_data cat("Reactive expression executing at:", Sys.time(), "\n")
cat("Input values - x:", input$x_var, "y:", input$y_var, "\n")
# Your data processing code
process_data(input$x_var, input$y_var)
})
$plot <- renderPlot({
outputcat("renderPlot executing at:", Sys.time(), "\n")
<- my_data()
data cat("Data received, rows:", nrow(data), "\n")
# Your plotting code
plot(data)
}) }
Common Solutions:
# Solution 1: Use req() to handle missing inputs
$plot <- renderPlot({
outputreq(input$x_var) # Wait for input to be available
req(input$y_var)
req(input$dataset != "") # Ensure non-empty selection
# Your plotting code
})
# Solution 2: Check for reactive dependency issues
$plot <- renderPlot({
output# Explicitly reference reactive values
<- input$x_var
x_val <- input$y_var
y_val
# Use isolate() to break unwanted dependencies
<- isolate(expensive_data_processing())
data
plot(data[[x_val]], data[[y_val]])
})
# Solution 3: Handle NULL or empty data gracefully
$plot <- renderPlot({
output<- my_data()
data
if (is.null(data) || nrow(data) == 0) {
plot.new()
text(0.5, 0.5, "No data available", cex = 1.5)
return()
}
plot(data)
})
Issue 2: Application Won’t Start
Problem: Your Shiny app crashes immediately or shows error messages on startup.
Diagnosis Checklist:
# Check syntax and dependencies before running
library(shiny)
# Verify all required packages
<- c("shiny", "ggplot2", "dplyr", "DT")
required_packages <- required_packages[!required_packages %in% installed.packages()[,"Package"]]
missing_packages
if(length(missing_packages) > 0) {
cat("Missing packages:", paste(missing_packages, collapse = ", "), "\n")
install.packages(missing_packages)
}
# Test UI and server components separately
<- fluidPage(
ui_test titlePanel("Test UI"),
h3("If you see this, UI is working")
)
<- function(input, output, session) {
server_test cat("Server function executed successfully\n")
}
# Test minimal app first
shinyApp(ui_test, server_test)
Common Startup Issues:
# Issue: Missing function definitions
<- function(input, output, session) {
server $plot <- renderPlot({
output# Error: undefined_function() doesn't exist
<- undefined_function(input$data)
data plot(data)
})
}
# Solution: Define all functions or source them
source("helper_functions.R")
# Issue: Incorrect reactive syntax
# Wrong:
<- reactive(
my_data filter(mtcars, cyl == input$cylinders)
)
# Correct:
<- reactive({
my_data filter(mtcars, cyl == input$cylinders)
})
# Issue: UI/Server ID mismatches
# UI:
selectInput("cylinder_count", ...)
# Server (wrong):
filter(mtcars, cyl == input$cylinders) # ID doesn't match
# Server (correct):
filter(mtcars, cyl == input$cylinder_count)
Issue 3: Performance Problems
Problem: Your application runs slowly, causing user frustration and timeout errors.
Performance Diagnostic Tools:
# Identify slow reactive expressions
<- function(input, output, session) {
server
<- reactive({
slow_computation <- Sys.time()
start_time
# Your expensive computation
<- complex_analysis(input$large_dataset)
result
<- Sys.time()
end_time cat("Computation took:", end_time - start_time, "seconds\n")
result
})
# Monitor render times
$plot <- renderPlot({
output<- Sys.time()
start_time
<- slow_computation()
data <- create_complex_plot(data)
p
<- Sys.time()
end_time cat("Plot rendering took:", end_time - start_time, "seconds\n")
p
}) }
Performance Optimization Solutions:
# Solution 1: Implement reactive caching
<- function(input, output, session) {
server
# Cache expensive computations
<- reactive({
cached_data # This will only recalculate when input$dataset changes
expensive_processing(input$dataset)
%>% bindCache(input$dataset)
})
# Use bindEvent for better control
<- reactive({
filtered_data cached_data() %>%
filter(category == input$category)
%>% bindEvent(input$update_button) # Only update on button click
})
}
# Solution 2: Optimize data operations
<- function(input, output, session) {
server
# Load data once, filter reactively
<- reactiveVal()
base_data
# Load data on startup
observe({
base_data(read_large_dataset())
once = TRUE)
},
# Fast filtering of pre-loaded data
<- reactive({
filtered_data req(base_data())
base_data() %>%
filter(date >= input$start_date,
<= input$end_date)
date
})
}
# Solution 3: Implement progressive loading
<- function(input, output, session) {
server
# Show loading indicator
$plot <- renderPlot({
outputwithProgress(message = "Generating plot...", value = 0, {
setProgress(0.3, detail = "Loading data...")
<- load_data(input$file)
data
setProgress(0.6, detail = "Processing...")
<- process_data(data)
processed
setProgress(0.9, detail = "Creating visualization...")
<- create_plot(processed)
plot_result
setProgress(1.0, detail = "Complete!")
plot_result
})
}) }
Issue 4: Deployment Failures
Problem: Your app works locally but fails when deployed to shinyapps.io or other platforms.
Pre-Deployment Checklist:
# Check package dependencies
::dependencies() # List all package dependencies
renv
# Test with explicit library loading
library(shiny)
library(ggplot2)
library(dplyr)
# ... all other required packages
# Check for hardcoded file paths
# Wrong:
<- read.csv("C:/Users/myname/data/file.csv")
data
# Correct:
<- read.csv("data/file.csv") # Relative path
data
# Check for platform-specific code
# Avoid Windows-specific functions if deploying to Linux servers
Deployment-Specific Solutions:
# Solution 1: Environment-aware configuration
<- function(input, output, session) {
server
# Detect environment
<- Sys.getenv("SHINY_PORT") == ""
is_local
if (is_local) {
# Local development settings
<- "local_data/"
data_path <- 1000
cache_size else {
} # Production deployment settings
<- "data/"
data_path <- 100
cache_size
}
# Use environment-appropriate settings
<- reactive({
data read_data_from_path(data_path, cache_size)
})
}
# Solution 2: Robust error handling for deployment
<- function(input, output, session) {
server
$results <- renderTable({
outputtryCatch({
<- process_user_data(input$file)
data calculate_results(data)
error = function(e) {
}, # Log error for debugging
cat("Error in results calculation:", e$message, "\n")
# Return user-friendly message
data.frame(Error = "Unable to process data. Please check your file format.")
})
}) }
Issue 5: Reactive Expression Errors
Problem: Complex reactive expressions produce unexpected results or fail unpredictably.
Reactive Debugging Strategies:
<- function(input, output, session) {
server
# Debug reactive chains
<- reactive({
step1 cat("Step 1: Processing input", input$raw_data, "\n")
<- validate_input(input$raw_data)
result cat("Step 1 result:", class(result), "\n")
result
})
<- reactive({
step2 cat("Step 2: Transforming data\n")
<- step1()
data req(!is.null(data)) # Ensure step1 succeeded
<- transform_data(data)
result cat("Step 2 result:", nrow(result), "rows\n")
result
})
$final_result <- renderTable({
outputcat("Final render: Starting\n")
<- step2()
final_data req(nrow(final_data) > 0)
cat("Final render: Complete\n")
final_data
}) }
Advanced Reactive Patterns:
# Pattern 1: Isolate expensive computations
<- function(input, output, session) {
server
# Expensive computation that shouldn't re-run for every input change
<- eventReactive(input$calculate_button, {
expensive_result withProgress(message = "Computing...", {
# Use isolate to access inputs without creating dependencies
<- list(
params method = isolate(input$method),
iterations = isolate(input$iterations),
tolerance = isolate(input$tolerance)
)
run_expensive_algorithm(params)
})
})
# Lightweight visualization that can update frequently
$preview <- renderPlot({
outputif (input$show_preview && !is.null(expensive_result())) {
create_quick_preview(expensive_result(), input$color_scheme)
}
})
}
# Pattern 2: Manage reactive state carefully
<- function(input, output, session) {
server
# Use reactiveValues for complex state management
<- reactiveValues(
state data = NULL,
processed = FALSE,
last_update = NULL
)
# Update state based on user actions
observeEvent(input$load_data, {
$data <- load_dataset(input$data_source)
state$processed <- FALSE
state$last_update <- Sys.time()
state
})
observeEvent(input$process_data, {
req(state$data)
$data <- process_dataset(state$data)
state$processed <- TRUE
state$last_update <- Sys.time()
state
})
# Outputs react to state changes
$status <- renderText({
outputif (is.null(state$data)) {
"No data loaded"
else if (!state$processed) {
} "Data loaded, ready for processing"
else {
} paste("Data processed at", state$last_update)
}
}) }
Systematic Debugging Workflow
The TRACE Method
A systematic approach to debugging Shiny applications:
flowchart TD A[T - Test Isolation] --> B[R - Read Error Messages] B --> C[A - Analyze Dependencies] C --> D[C - Check Inputs/Outputs] D --> E[E - Examine Reactive Flow] E --> F[Solution Implementation] F --> G[Verify Fix] style A fill:#e1f5fe style F fill:#e8f5e8 style G fill:#f3e5f5
T - Test Isolation:
# Isolate the problematic component
<- function(input, output, session) {
test_server # Test only the failing reactive expression
<- reactive({
problem_reactive # Simplified version of your failing code
basic_operation(input$test_input)
})
$test_output <- renderPrint({
outputproblem_reactive()
})
}
# Test with minimal UI
<- fluidPage(
test_ui textInput("test_input", "Test Input"),
verbatimTextOutput("test_output")
)
shinyApp(test_ui, test_server)
R - Read Error Messages:
# Capture and analyze error details
<- function(input, output, session) {
server
$debug_output <- renderPrint({
outputtryCatch({
# Your problematic code
problematic_function(input$data)
error = function(e) {
}, # Detailed error analysis
list(
message = e$message,
call = deparse(e$call),
traceback = traceback(),
session_info = sessionInfo()
)
})
}) }
A - Analyze Dependencies:
# Map reactive dependencies
<- function(input, output, session) {
server
# Document reactive relationships
<- reactive({
data_source cat("data_source depends on: input$file_path\n")
read_data(input$file_path)
})
<- reactive({
filtered_data cat("filtered_data depends on: data_source, input$filter_col, input$filter_val\n")
data_source() %>%
filter(.data[[input$filter_col]] == input$filter_val)
})
$summary <- renderTable({
outputcat("summary depends on: filtered_data\n")
summary(filtered_data())
}) }
C - Check Inputs/Outputs:
# Validate input/output consistency
<- function(input, output, session) {
server
# Monitor input changes
observe({
cat("Input changed - dataset:", input$dataset,
"x_var:", input$x_var, "y_var:", input$y_var, "\n")
})
# Validate output generation
$plot <- renderPlot({
outputcat("renderPlot called\n")
# Validate inputs exist
if (is.null(input$dataset) || input$dataset == "") {
cat("Error: No dataset selected\n")
return(NULL)
}
# Validate data availability
<- get_data(input$dataset)
data if (nrow(data) == 0) {
cat("Error: Dataset is empty\n")
return(NULL)
}
cat("Plot generation successful\n")
plot(data)
}) }
E - Examine Reactive Flow:
# Use reactive log to understand execution order
options(shiny.reactlog = TRUE)
# After running your app:
::reactlogShow()
shiny
# Or programmatically examine reactive graph
<- function(input, output, session) {
server
# Add reactive timing
<- reactive({
timed_reactive <- Sys.time()
start <- expensive_operation(input$data)
result <- Sys.time()
end
cat("Reactive execution time:", difftime(end, start, units = "secs"), "\n")
result
}) }
Common Questions About Shiny Troubleshooting
This typically happens due to reactive invalidation cascades. When one reactive expression invalidates, it can trigger a chain reaction affecting dependent expressions. To diagnose this:
# Add execution counters to track calls
<- function(input, output, session) {
server
<- reactiveVal(0)
call_count
<- reactive({
my_reactive <- call_count() + 1
current_count call_count(current_count)
cat("Reactive executed", current_count, "times\n")
# Your reactive code here
expensive_computation(input$data)
}) }
Common causes:
- Multiple outputs depending on the same reactive expression
- Reactive expressions with hidden dependencies
- Use of
invalidateLater()
creating continuous updates
Solutions:
- Use
bindCache()
to cache expensive computations - Implement
bindEvent()
to control when reactions occur - Review reactive dependencies with
reactlogShow()
Production environments often have different constraints and configurations than local development. Here’s a systematic approach:
# Environment-aware error handling
<- function(input, output, session) {
server
# Detect production environment
<- !interactive() || Sys.getenv("R_CONFIG_ACTIVE") == "production"
is_production
$data_table <- renderTable({
outputtryCatch({
# Your data processing code
process_data(input$file)
error = function(e) {
}, # Log errors differently based on environment
if (is_production) {
# Log to file in production
cat(paste("Error at", Sys.time(), ":", e$message),
file = "app_errors.log", append = TRUE)
# Return user-friendly message
data.frame(Message = "Data processing unavailable. Please try again later.")
else {
} # Show detailed error in development
cat("Development error:", e$message, "\n")
print(traceback())
stop(e)
}
})
}) }
Key differences to check:
- File paths (relative vs absolute)
- Package versions and availability
- Memory and CPU limitations
- Network access restrictions
- R version differences
File upload debugging requires special attention to file validation, processing stages, and error handling:
<- function(input, output, session) {
server
# Debug file upload step by step
<- reactive({
uploaded_file req(input$file)
cat("File upload detected:\n")
cat(" Name:", input$file$name, "\n")
cat(" Size:", input$file$size, "bytes\n")
cat(" Type:", input$file$type, "\n")
cat(" Path:", input$file$datapath, "\n")
# Validate file exists and is readable
if (!file.exists(input$file$datapath)) {
stop("Uploaded file not found at expected path")
}
if (file.size(input$file$datapath) == 0) {
stop("Uploaded file is empty")
}
$file
input
})
<- reactive({
processed_data <- uploaded_file()
file_info
tryCatch({
# Test file reading
cat("Attempting to read file...\n")
if (tools::file_ext(file_info$name) == "csv") {
<- read.csv(file_info$datapath)
data else if (tools::file_ext(file_info$name) == "xlsx") {
} <- readxl::read_excel(file_info$datapath)
data else {
} stop("Unsupported file type")
}
cat("File read successfully:", nrow(data), "rows,", ncol(data), "columns\n")
cat("Column names:", paste(names(data), collapse = ", "), "\n")
dataerror = function(e) {
}, cat("Error reading file:", e$message, "\n")
return(NULL)
})
}) }
Essential file upload debugging steps:
- Verify file path and permissions
- Check file format and encoding
- Validate file size limits
- Test with known good files first
- Implement progressive error messages
Progressive slowdown often indicates memory leaks, accumulating reactive dependencies, or inefficient data handling:
<- function(input, output, session) {
server
# Monitor memory usage over time
<- reactiveVal(list())
memory_tracker
# Track memory every 30 seconds
observe({
<- gc()[2, 2] # Memory in MB
current_memory <- Sys.time()
current_time
<- memory_tracker()
memory_history length(memory_history) + 1]] <- list(
memory_history[[time = current_time,
memory = current_memory
)
# Keep only last 50 measurements
if (length(memory_history) > 50) {
<- memory_history[26:50]
memory_history
}
memory_tracker(memory_history)
cat("Memory usage:", current_memory, "MB at", format(current_time), "\n")
%>% bindEvent(TRUE, ignoreInit = FALSE)
})
# Monitor reactive execution frequency
<- reactiveVal(0)
execution_count
<- reactive({
expensive_reactive <- execution_count() + 1
count execution_count(count)
if (count %% 10 == 0) {
cat("Expensive reactive executed", count, "times\n")
}
# Your expensive computation
heavy_computation(input$large_dataset)
})
# Display performance metrics
$performance_info <- renderText({
output<- memory_tracker()
memory_hist if (length(memory_hist) > 1) {
paste("Current memory:", tail(memory_hist, 1)[[1]]$memory, "MB",
"| Reactive executions:", execution_count())
}
}) }
Performance debugging strategies:
- Use
profvis
to identify slow functions - Monitor memory usage patterns
- Check for growing reactive dependencies
- Implement data caching and cleanup
- Use
gc()
strategically to manage memory
Test Your Understanding
You have a Shiny app where a plot output shows “object not found” error, but only when users select certain input combinations. The error doesn’t appear in the R console. What’s the most effective first debugging step?
- Add
browser()
statements throughout your server function
- Use
req()
to validate all inputs in the problematic render function
- Insert
cat()
statements to trace the reactive execution flow
- Restart R and reload the application
- Consider what type of error this represents and what information you need first
- Think about what would help you understand the specific conditions causing the failure
- Consider which approach gives you the most diagnostic information with minimal code changes
C) Insert cat()
statements to trace the reactive execution flow
This is the most effective first step because:
Why this works best:
- Conditional errors suggest the problem occurs only with specific input combinations
- Silent failures in outputs require understanding the execution path
cat()
statements reveal which reactive expressions execute and with what values- You can trace the exact sequence leading to the error
Implementation example:
$problematic_plot <- renderPlot({
outputcat("Plot render starting with inputs:\n")
cat(" dataset:", input$dataset, "\n")
cat(" x_var:", input$x_var, "\n")
cat(" y_var:", input$y_var, "\n")
<- get_data(input$dataset)
data cat(" data loaded, rows:", nrow(data), "\n")
cat(" available columns:", paste(names(data), collapse = ", "), "\n")
# This will reveal which specific combination causes the "object not found"
plot(data[[input$x_var]], data[[input$y_var]])
})
Why other options are less effective initially:
- A)
browser()
stops execution but doesn’t show the problematic input patterns - B)
req()
might mask the real issue without revealing the cause
- D) Restarting doesn’t provide diagnostic information about the conditional failure
Your Shiny app works fine with small datasets but becomes unresponsive with larger ones. Users report that the app “freezes” for several minutes. You need to identify whether the issue is in data processing, reactive inefficiency, or rendering. What’s the best diagnostic approach?
- Use
Sys.sleep()
to simulate delays and test user patience
- Implement
withProgress()
indicators to show something is happening
- Use
profvis()
to profile the entire reactive chain with large data
- Switch to smaller datasets until you find the performance threshold
- Consider what type of information you need to solve the root cause vs. just managing symptoms
- Think about which approach helps you identify the specific bottleneck location
- Consider scalability - you need to handle large datasets eventually
C) Use profvis()
to profile the entire reactive chain with large data
This is the best diagnostic approach because:
Why profiling is essential:
- Identifies the actual bottleneck rather than guessing
- Shows execution time breakdown across different functions and reactive expressions
- Reveals memory usage patterns that might cause performance issues
- Provides quantitative data for optimization decisions
Implementation example:
library(profvis)
# Profile your app with problematic large dataset
profvis({
# Simulate the problematic reactive chain
<- load_large_dataset()
large_data <- expensive_processing(large_data)
processed_data <- create_complex_plot(processed_data)
visualization
})
# Or profile during actual app usage
<- function(input, output, session) {
server
$results <- renderTable({
outputif (input$enable_profiling) {
profvis({
<- process_large_data(input$large_file)
data compute_results(data)
})else {
} <- process_large_data(input$large_file)
data compute_results(data)
}
}) }
What profiling reveals:
- Which specific functions consume the most time
- Memory allocation patterns causing slowdowns
- Whether the issue is CPU-bound or memory-bound
- Opportunities for caching or optimization
Why other options are insufficient:
- A) Simulating delays doesn’t identify real bottlenecks
- B) Progress indicators improve UX but don’t solve performance issues
- D) Finding thresholds doesn’t help with production-scale data requirements
Your Shiny app works perfectly on your local machine but fails to deploy to shinyapps.io with the error “package ‘custompackage’ is not available.” The package is installed locally and loads correctly. What’s the most comprehensive solution approach?
- Install the package directly on the server using
install.packages()
- Create a
requirements.txt
file listing all dependencies
- Use
renv
to create a reproducible environment and check package sources
- Switch to a different package that’s available on CRAN
- Consider what causes package availability differences between local and deployment environments
- Think about reproducibility and long-term maintainability
- Consider where the package might be sourced from (CRAN, GitHub, Bioconductor, etc.)
C) Use renv
to create a reproducible environment and check package sources
This is the most comprehensive solution because:
Why renv
solves deployment issues:
- Captures exact package versions used in your local environment
- Records package sources (CRAN, GitHub, Bioconductor, etc.)
- Creates reproducible environments across different platforms
- Identifies dependency conflicts before deployment
Implementation steps:
# In your local project directory
library(renv)
# Initialize renv for your project
::init()
renv
# Install and record all dependencies
::snapshot()
renv
# Check where packages come from
::status()
renv
# If custompackage is from GitHub:
::install("username/custompackage")
renv::snapshot()
renv
# For deployment, include renv.lock file
# shinyapps.io will automatically use it
What this reveals and fixes:
- Package source identification: Whether the package is from CRAN, GitHub, or other repositories
- Version compatibility: Ensures the same versions work in both environments
- Hidden dependencies: Captures all required packages automatically
- Platform differences: Handles Windows/Linux package variations
Additional deployment checks:
# Check for system dependencies
::dependencies()
renv
# Verify all packages are from accessible sources
::restore(dry = TRUE)
renv
# For GitHub packages, ensure public access
# or provide authentication
Why other options are insufficient:
- A) You can’t install packages directly on shinyapps.io servers
- B)
requirements.txt
is for Python; R uses different dependency management - D) Switching packages avoids the problem but may require code rewrites and lose functionality
Conclusion
Effective Shiny troubleshooting transforms from a frustrating experience into a systematic, manageable process when you apply the right strategies and tools. The key insight is that Shiny’s reactive architecture requires debugging approaches specifically designed for event-driven, asynchronous applications rather than traditional linear R scripts.
By mastering the TRACE method—Test isolation, Read error messages, Analyze dependencies, Check inputs/outputs, and Examine reactive flow—you develop a professional debugging workflow that quickly identifies root causes. The diagnostic tools and techniques covered in this guide, from strategic cat()
statements to reactive profiling, give you the visibility needed to understand complex application behavior.
Remember that prevention is often more valuable than debugging. Implementing robust error handling, input validation, and performance monitoring from the start saves significant troubleshooting time later. The patterns and practices demonstrated here become second nature with experience, allowing you to build more reliable applications and resolve issues quickly when they do occur.
Next Steps
Based on what you’ve learned in this troubleshooting guide, here are the recommended paths for continuing your Shiny development expertise:
Immediate Next Steps (Complete These First)
- Error Handling and Validation - Implement proactive error prevention strategies in your server logic
- Performance Optimization Techniques - Apply systematic performance improvements to prevent slowdown issues
- Practice Exercise: Take an existing Shiny app and implement comprehensive error handling and performance monitoring using the techniques from this guide
Building on Your Debugging Foundation (Choose Your Path)
For Production-Ready Applications:
For Advanced Development:
For Deployment Mastery:
Long-term Goals (2-4 Weeks)
- Build a robust, production-ready Shiny application with comprehensive error handling and monitoring
- Develop a personal troubleshooting toolkit with reusable debugging functions and patterns
- Create a deployment pipeline that prevents environment-specific issues through systematic testing
- Contribute to the Shiny community by sharing debugging solutions and helping others troubleshoot
Explore More Articles
Here are more articles from the same category to help you dive deeper into Shiny development.
Reuse
Citation
@online{kassambara2025,
author = {Kassambara, Alboukadel},
title = {Shiny {Troubleshooting} {Guide:} {Solutions} to {Common}
{Issues}},
date = {2025-05-23},
url = {https://www.datanovia.com/learn/tools/shiny-apps/resources/troubleshooting.html},
langid = {en}
}