Shiny Debugging & Troubleshooting Cheatsheet: Fix Issues Fast

Essential debugging patterns and solutions for common Shiny development problems

Complete debugging reference for Shiny applications covering reactive troubleshooting, performance issues, deployment problems, and error handling with copy-paste solutions and diagnostic techniques.

Tools
Author
Affiliation
Published

June 22, 2025

Modified

June 23, 2025

Keywords

shiny debugging cheatsheet, debug shiny apps, shiny troubleshooting guide, fix shiny reactive errors, shiny performance debugging, shiny error solutions

Shiny Debugging & Troubleshooting

Essential diagnostic patterns and quick fixes for common Shiny development problems

1 Debug Setup & Essential Tools

# Enable comprehensive debugging
options(
  shiny.error = browser,
  shiny.reactlog = TRUE,
  shiny.trace = TRUE
)

# View reactive dependencies
reactlogShow()

# Performance profiling
library(profvis)
profvis({
  # Your expensive Shiny operations
  expensive_reactive()
})

# Memory monitoring
cat("Memory:", gc()[2,2], "MB\n")

Quick Tip: Enable reactlog to visualize which reactive expressions are firing and their dependencies

2 Reactive Expression Debugging

# Trace reactive execution
my_reactive <- reactive({
  cat("Reactive executing at:", Sys.time(), "\n")
  cat("Input values:", input$x, input$y, "\n")
  
  # Your reactive code
  result <- process_data(input$x, input$y)
  cat("Result rows:", nrow(result), "\n")
  result
})

# Stop unwanted reactive cascades
output$plot <- renderPlot({
  # Only react to specific inputs
  data <- isolate(expensive_data())
  plot(data[[input$x_var]], data[[input$y_var]])
})

# Control reactive timing
filtered_data <- reactive({
  my_data() %>% filter(category == input$filter)
}) %>% bindEvent(input$update_btn)

Debug Pattern

Add cat() statements → Check reactive log → Use isolate() or bindEvent() to control flow

3 Common Error Solutions

# Fix: Output not updating
output$my_output <- renderText({
  req(input$required_input)  # Wait for input
  req(input$text_input != "")  # Non-empty check
  
  paste("Result:", input$text_input)
})

# Fix: Object not found errors
output$safe_plot <- renderPlot({
  tryCatch({
    data <- get_data(input$dataset)
    req(input$x_var %in% names(data))
    plot(data[[input$x_var]], data[[input$y_var]])
  }, error = function(e) {
    plot.new()
    text(0.5, 0.5, "Data not available")
  })
})

# Fix: App won't start
# Check for syntax errors and missing packages
if (!require(ggplot2)) install.packages("ggplot2")

Safety First: Always use req() to validate inputs before processing

4 Performance Issue Solutions

# Cache expensive computations
expensive_analysis <- reactive({
  heavy_computation(input$large_dataset)
}) %>% bindCache(input$large_dataset)

# Show progress for long operations
output$results <- renderTable({
  withProgress(message = "Processing...", value = 0, {
    setProgress(0.3, detail = "Loading data...")
    data <- load_data()
    
    setProgress(0.7, detail = "Analyzing...")
    result <- analyze_data(data)
    
    setProgress(1.0)
    result
  })
})

# Optimize data loading
base_data <- reactiveVal()

# Load once on startup
observe({
  base_data(read_large_file())
}, once = TRUE)

# Fast filtering of pre-loaded data
filtered_data <- reactive({
  base_data() %>% filter(category == input$filter)
})

Performance Pattern

Load data once → Cache expensive operations → Use progress indicators → Filter pre-loaded data

5 Deployment Issue Solutions

# Environment-aware configuration
is_local <- Sys.getenv("SHINY_PORT") == ""

if (is_local) {
  data_path <- "local_data/"
} else {
  data_path <- "data/"  # Production path
}

# Robust error handling for production
output$results <- renderTable({
  tryCatch({
    process_data(input$file)
  }, error = function(e) {
    # Log error for debugging
    cat("Error:", e$message, "\n")
    
    # User-friendly message
    data.frame(Error = "Processing failed. Please try again.")
  })
})

# Check package dependencies
required_packages <- c("shiny", "ggplot2", "dplyr")
missing <- required_packages[!required_packages %in% 
  installed.packages()[,"Package"]]

if(length(missing) > 0) {
  install.packages(missing)
}

Deployment Tip: Use relative paths and test package availability before deployment

6 Advanced Error Handling

# Comprehensive input validation
validate_inputs <- function(input) {
  validate(
    need(input$file, "Please upload a file"),
    need(input$columns != "", "Please select columns"),
    need(is.numeric(input$threshold), "Threshold must be numeric")
  )
}

# Safe reactive wrapper
safe_reactive <- function(expr, fallback = NULL) {
  reactive({
    tryCatch(expr, error = function(e) {
      showNotification(paste("Error:", e$message), type = "error")
      fallback
    })
  })
}

# Error logging system
log_error <- function(message, session = getDefaultReactiveDomain()) {
  error_info <- list(
    timestamp = Sys.time(),
    session_id = session$token,
    message = message,
    user_agent = session$clientData$url_search
  )
  
  # Log to file or monitoring service
  write(jsonlite::toJSON(error_info), "error.log", append = TRUE)
}

Error Strategy

Validate inputs → Wrap in tryCatch → Log errors → Show user-friendly messages



Systematic Debugging Workflow

The TRACE Method for Shiny Issues:

T - Test Isolation: Isolate the problematic component in a minimal app

R - Read Errors: Examine error messages and console output carefully

A - Analyze Dependencies: Check reactive relationships with reactlog

C - Check I/O: Verify input values and output expectations

E - Examine Flow: Trace execution path with debug statements

Complete Troubleshooting Guide Testing & Debugging Best Practices

placeholder

placeholder
No matching items
Back to top

Reuse

Citation

BibTeX citation:
@online{kassambara2025,
  author = {Kassambara, Alboukadel},
  title = {Shiny {Debugging} \& {Troubleshooting} {Cheatsheet:} {Fix}
    {Issues} {Fast}},
  date = {2025-06-22},
  url = {https://www.datanovia.com/learn/tools/shiny-apps/cheatsheets/debugging-troubleshooting.html},
  langid = {en}
}
For attribution, please cite this work as:
Kassambara, Alboukadel. 2025. “Shiny Debugging & Troubleshooting Cheatsheet: Fix Issues Fast.” June 22, 2025. https://www.datanovia.com/learn/tools/shiny-apps/cheatsheets/debugging-troubleshooting.html.